ON A CONSTANT ARISING IN MANIN'S CONJECTURE FOR DEL PEZZO SURFACES

@article{Derenthal2007ONAC,
  title={ON A CONSTANT ARISING IN MANIN'S CONJECTURE FOR DEL PEZZO SURFACES},
  author={U. Derenthal},
  journal={Mathematical Research Letters},
  year={2007},
  volume={14},
  pages={481-489}
}
  • U. Derenthal
  • Published 2007
  • Mathematics
  • Mathematical Research Letters
  • For split smooth Del Pezzo surfaces, we analyse the structure of the effective cone and prove a recursive formula for the value of $\alpha$, appearing in the leading constant as predicted by Peyre of Manin's conjecture on the number of rational points of bounded height on the surface. Furthermore, we calculate $\alpha$ for all singular Del Pezzo surfaces of degree $\ge 3$. 
    26 Citations

    Tables from this paper

    References

    SHOWING 1-10 OF 23 REFERENCES
    UNIVERSAL TORSORS OVER DEL PEZZO SURFACES AND RATIONAL POINTS
    • 33
    • PDF
    An overview of Manin's conjecture for del Pezzo surfaces
    • 38
    • PDF
    On Manin's conjecture for singular del Pezzo surfaces of degree four, I
    • 39
    • PDF
    On Manin's conjecture for a certain singular cubic surface
    • 51
    • PDF
    Manin's conjecture for toric varieties
    • 147
    • PDF
    Geometry of universal torsors
    • 11
    Nombre de points de hauteur bornée sur les surfaces de del Pezzo de degré 5
    • 38
    Exceptional groups and del Pezzo surfaces
    • 28
    • PDF
    The Cox Ring of a Del Pezzo Surface
    • 94
    • PDF