Numerical null controllability of semi-linear 1-D heat equations : fixed point , least squares and Newton methods

@inproceedings{FernndezCara2011NumericalNC,
  title={Numerical null controllability of semi-linear 1-D heat equations : fixed point , least squares and Newton methods},
  author={Enrique Fern{\'a}ndez-Cara and Arnaud M{\"u}nch},
  year={2011}
}
This paper deals with the numerical computation of distributed null controls for semilinear 1D heat equations, in the sublinear and slightly superlinear cases. Under sharp growth assumptions, the existence of controls has been obtained in [Fernandez-Cara & Zuazua, Null and approximate controllability for weakly blowing up semi-linear heat equation, 2000] via a fixed point reformulation; see also [Barbu, Exact controllability of the superlinear heat equation, 2000]. More precisely, Carleman… CONTINUE READING

Citations

Publications citing this paper.
Showing 1-10 of 11 extracted citations

References

Publications referenced by this paper.
Showing 1-10 of 20 references

Numerical approximation of null controls for the heat equation: Ill-posedness and remedies, Inverse Problems

A. Münch, E. Zuazua
2010

Exact and approximate controllability for distributed parameter systems : a numerical approach

F. Hecht, A. Le Hyaric, J. Morice, K. Ohtsuka
Encyclopedia of Mathematics and its applications • 2008

Exact and approximate controllability for distributed parameter systems: a numerical approach, Encyclopedia of Mathematics and its applications

R. Glowinski, J. L. Lions, J. He
2008

Approximate controllability of the semilinear heat equation

J.-P. Puel Fabre, E. Zuazua
SIAM J . Control Optim . • 2004

Identifications numériques de contrôles distribués pour l ’ équation des ondes

Charpentier, Y. Maday
C . R . Acad . Sci . Paris Sér . I • 1996

Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, number 34

A. V. Fursikov, O. Yu
Seoul National University, • 1996

Contrôle exact de l’équation de la chaleur

G. Lebeau, L. Robbiano
Comm. Partial Differential Equations • 1995

Imanuvilov, Controllability of parabolic equations (Russian)

O. Yu
Mat. Sb • 1995

Similar Papers

Loading similar papers…