Numerical integration of constrained Hamiltonian systems using Dirac brackets

@article{Seiler1999NumericalIO,
  title={Numerical integration of constrained Hamiltonian systems using Dirac brackets},
  author={Werner M. Seiler},
  journal={Math. Comput.},
  year={1999},
  volume={68},
  pages={661-681}
}
We study the numerical properties of the equations of motion of constrained systems derived with Dirac brackets. This formulation is compared with one based on the extended Hamiltonian. As concrete examples, a pendulum in Cartesian coordinates and a chain molecule are treated. 

References

Publications referenced by this paper.
Showing 1-10 of 23 references

Quantization of gauge systems

  • M. Henneaux, C. Teitelboim
  • Princeton University Press
  • 1992
Highly Influential
7 Excerpts

Numerical analysis of constrained Hamiltonian systems and the formal theory of differential equations

  • R. W. Tucker
  • Math . Comp . Simul .
  • 1998

Discrete gradient methods for solving ODEs numerically while preserving a first integral

  • G.R.W. Quispel, G. S. Turner
  • J. Phys. A 29
  • 1996
1 Excerpt

Hamiltonian dynamics of an elastica and the stability of solitary waves

  • D. J. Dichmann, J. H. Maddocks, R. L. Pego
  • Arch. Rat. Mech. Anal. 135
  • 1996
2 Excerpts

Numerical solution of initial-value problems in differential-algebraic equations

  • K. E. Brenan, S. L. Campbell, L. R. Petzold
  • Classics in Applied Mathematics 14, SIAM…
  • 1996
1 Excerpt

Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems

  • L. O. Jay
  • SIAM J. Numer. Anal. 33
  • 1996
1 Excerpt

The numerical solution of ordinary differential equations with conservation laws

  • P. C. Moan
  • Master’s thesis, Norwegian Institute of…
  • 1996
1 Excerpt

An unconstrained Hamiltonian formulation for incompressible fluid flow

  • J. H. Maddocks, R. L. Pego
  • Comm. Math. Phys. 170
  • 1995
2 Excerpts

Similar Papers

Loading similar papers…