Numerical Semigroups, Cyclotomic Polynomials, and Bernoulli Numbers
@article{Moree2014NumericalSC, title={Numerical Semigroups, Cyclotomic Polynomials, and Bernoulli Numbers}, author={Pieter Moree}, journal={The American Mathematical Monthly}, year={2014}, volume={121}, pages={890 - 902} }
Abstract We give two proofs of a folklore result relating numerical semigroups of embedding dimension two and binary cyclotomic polynomials and explore some consequences. In particular, we give a more conceptual reproof of a result of Hong et al. (2012) on gaps between the exponents of nonzero monomials in a binary cyclotomic polynomial. The intent of this paper is to better unify the various results within the cyclotomic polynomial and numerical semigroup communities.
31 Citations
Cyclotomic numerical semigroup polynomials with few irreducible factors
- Mathematics
- 2021
A numerical semigroup S is cyclotomic if its semigroup polynomial PS is a product of cyclotomic polynomials. The number of irreducible factors of PS (with multiplicity) is the polynomial length l(S)…
Unitary cyclotomic polynomials.
- Mathematics
- 2019
The notion of block divisibility naturally leads one to introduce unitary cyclotomic polynomials. We formulate some basic properties of unitary cyclotomic polynomials and study how they are connected…
Binary Cyclotomic Polynomials: Representation via Words and Algorithms
- Mathematics, Computer ScienceWORDS
- 2021
An efficient algorithm is designed that computes a compact representation of the vector of coefficients of the polynomial as a word on a ternary alphabet that is of linear time with respect to the size of the output, and, thus, optimal.
2019 Coefficients of (inverse) unitary cyclotomic polynomials
- Mathematics
- 2019
The notion of block divisibility naturally leads one to introduce unitary cyclotomic polynomials Φ ˚ n p x q . They can be written as certain products of cyclotomic poynomials. We study the case…
Characterizations of numerical semigroup complements via Apéry sets
- Mathematics
- 2017
In this paper, we generalize the work of Tuenter to give an identity which completely characterizes the complement of a numerical semigroup in terms of its Apéry sets. Using this result, we compute…
Cyclotomic Numerical Semigroups
- MathematicsSIAM J. Discret. Math.
- 2016
The notion of cyclotomic exponents and polynomially related numerical semigroups is introduced and some properties are derived and some applications of these new concepts are given.
Coefficients of (inverse) unitary cyclotomic polynomials
- MathematicsKodai Mathematical Journal
- 2020
The notion of block divisibility naturally leads one to introduce unitary cyclotomic polynomials $\Phi_n^*(x)$. They can be written as certain products of cyclotomic poynomials. We study the case…
References
SHOWING 1-10 OF 36 REFERENCES
Several Proofs of the Irreducibility of the Cyclotomic Polynomials
- MathematicsAm. Math. Mon.
- 2013
A number of classical proofs of the irreducibility of the nth cyclotomic polynomial ϕn(x), in both the original and a simplified form are presented.
Numerical semigroups: Apéry sets and Hilbert series
- Mathematics
- 2009
Let a1,…,an be relatively prime positive integers, and let S be the semigroup consisting of all non-negative integer linear combinations of a1,…,an. In this paper, we focus our attention on…
Cyclotomic Numerical Semigroups
- MathematicsSIAM J. Discret. Math.
- 2016
The notion of cyclotomic exponents and polynomially related numerical semigroups is introduced and some properties are derived and some applications of these new concepts are given.
The Frobenius problem, sums of powers of integers, and recurrences for the Bernoulli numbers☆
- Mathematics
- 2006
On Ternary Inclusion-Exclusion Polynomials
- MathematicsIntegers
- 2010
The main result is that the set of coefficients of Φ pqr is simply a string of consecutive integers which depends only on the residue class of r modulo pq, where p < q < r are odd primes.
On binary cyclotomic polynomials
- Mathematics
- 2013
We study the number of nonzero coefficients of cyclotomic polynomials Φm where m is the product of two distinct primes. 1. Presentation of the results Let m > 1 be an integer and Φm the cyclotomic…
On the coefficients of cyclotomic polynomials
- Mathematics
- 2013
The nth cyclotomic polynomial Phi_n(x)is the minimal polynomial of a primitive nth root of unity. The order of \Phi_n is the number of distinct odd prime factors of and the height of…
Coefficients of cyclotomic polynomials
- Mathematics
- 2009
Let $a(n, k)$ be the $k$-th coefficient of the $n$-th cyclotomic polynomial. Recently, Ji, Li and Moree \cite{JLM09} proved that for any integer $m\ge1$, $\{a(mn, k)| n, k\in\mathbb{N}\}=\mathbb{Z}$.…