Number of Points of Function Fields over Finite Fields

@inproceedings{Kahn2002NumberOP,
  title={Number of Points of Function Fields over Finite Fields},
  author={Bruno Kahn},
  year={2002}
}
Let k be a field; if ∼ is an adequate equivalence relation on algebraic cycles, we denote by Mot∼(k) or simply Mot∼ the category of motives modulo ∼ with rational coefficients, and by Mot ∼ its full subcategory consisting of effective motives [15]. We use the convention that the functor X 7→ h(X) from smooth projective k-varieties to Mot ∼ is covariant. We shall in fact only consider the two extreme cases: rational equivalence (rat) and numerical equivalence (num). Using the point of view of… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 12 references

Un invariant birationnel des variétés de dimension 3 sur un corps fini

  • G. Lachaud, M. Perret
  • J. Algebraic Geom. 9
  • 2000
Highly Influential
4 Excerpts

R

  • B. Kahn
  • Sujatha Birational motives, I, preprint
  • 2002
1 Excerpt

Letter to A

  • V. Voevodsky
  • Beilinson, Dec
  • 1992

numerical equivalence and semi-simplicity

  • U. Jannsen Motives
  • Invent. Math. 107
  • 1992
1 Excerpt

Classical motives, Motives (Seattle

  • A. Scholl
  • Proc. Sympos. Pure Math.,
  • 1991
2 Excerpts

Sur le groupe fondamental d’une variété unirationnelle

  • T. Ekedahl
  • C. R. Acad. Sci. Paris
  • 1983
3 Excerpts

D

  • S. Bloch, A. Kas
  • Lieberman Zero cycles on surfaces with pg = 0…
  • 1976
1 Excerpt

Similar Papers

Loading similar papers…