Null radiation zone at the LHC

  title={Null radiation zone at the LHC},
  author={Kaoru Hagiwara and Toshifumi Yamada},
  journal={Physical Review D},
The null radiation zone theorem states that, when special kinematical conditions are satisfied, all the helicity amplitudes of a parton-level subprocess where a vector current is emitted vanish due to destructive interference among different diagrams. We study the manifestation of the theorem in $pp$ collisions at the $\sqrt{s}=8$ TeV LHC. The theorem predicts that the cross section for $p p \rightarrow j j \gamma$ events is suppressed when the transverse momenta of the two jets are similar and… 
1 Citations

Figures and Tables from this paper

Investigating the production of leptoquarks by means of zeros of amplitude at photon electron collider

Leptoquarks belong to the possible candidates for explaining various anomalies in flavor physics. Nonetheless, their existence is yet to be confirmed on the experimental side. In this paper we show



Isospin-Violating Dark Matter at the LHC

We consider a toy model of dark matter (DM) with a gauge singlet Dirac fermion that has contact interactions to quarks that differ for right-handed up and down quarks. This is motivated by the

MadGraph/MadEvent v4: The New Web Generation

We present the latest developments of the MadGraph/MadEvent Monte Carlo event generator and several applications to hadron collider physics. In the current version events at the parton, hadron and

MadGraph 5: going beyond

The ideas and the most important developments of the code are described and the capabilities of the MadGraph matrix element generator are illustrated through a few simple phenomenological examples.


  • de Visscher, R. Frederix, M. Herquet, F. Maltoni and T. Plehn et al., JHEP 0709, 028 (2007) [arXiv:0706.2334 [hep-ph]]; J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, JHEP 1106, 128
  • 2011

G 11

  • 1117 (1985); M. A. Samuel and J. Reid, Phys. Rev. D 35, 3505 (1987); Erratum-ibid. D 38, 2913 (1988); U. Baur and D. Zeppenfeld, Nucl. Phys. B 325, 253 (1989); J. Reid, G. Li and M. A. Samuel, Phys. Rev. D 41, 1675 (1990); M. A. Doncheski and F. Halzen, Z. Phys. C 52, 673
  • 1991


  • Lett. B 103, 124
  • 1981


  • Lett. B 135, 324 (1984); J. Cortes, K. Hagiwara and F. Herzog, Nucl. Phys. B 278, 26 (1986); U. Baur and D. Zeppenfeld, Nucl. Phys. B 308, 127 (1988); U. Baur and E. L. Berger, Phys. Rev. D 41, 1476
  • 1990


  • Rev. D 28, 624
  • 1983


  • Rev. D 17, 750 (1978); K. O. Mikaelian, M. A. Samuel and D. Sahdev, Phys. Rev. Lett. 43, 746 (1979); R. W. Brown, D. Sahdev and K. O. Mikaelian, Phys. Rev. D 20, 1164 (1979); T. R. Grose and K. O. Mikaelian, Phys. Rev. D 23, 123 (1981); S. J. Brodsky and R. W. Brown, Phys. Rev. Lett. 49, 966 (1982);
  • 1984