Notes on the K3 Surface and the Mathieu Group M 24

@article{Eguchi2011NotesOT,
  title={Notes on the K3 Surface and the Mathieu Group M 24},
  author={T. Eguchi and H. Ooguri and Yuji Tachikawa},
  journal={Experimental Mathematics},
  year={2011},
  volume={20},
  pages={91 - 96}
}
We point out that the elliptic genus of the K3 surface has a natural decomposition in terms of dimensions of irreducible representations of the largest Mathieu group M 24. The reason remains a mystery. 
256 Citations

Topics from this paper

Algebraic surfaces, four-folds and moonshine
  • Highly Influenced
  • PDF
The Largest Mathieu Group and (Mock) Automorphic Forms
  • 35
  • PDF
Note on twisted elliptic genus of K3 surface
  • 126
  • PDF
Twisted Elliptic Genus for K3 and Borcherds Product
  • 16
  • PDF
Mathieu Moonshine and the Geometry of K3 Surfaces
  • 25
  • PDF
The McKay–Thompson series of Mathieu Moonshine modulo two
  • 11
  • PDF
Harmonic Maass forms associated to real quadratic fields
  • 3
  • PDF
A proof of the Thompson moonshine conjecture
  • 17
  • PDF
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 41 REFERENCES
Mathieu twining characters for K3
  • 126
  • PDF
Superconformal algebras and mock theta functions 2: Rademacher expansion for K3 surface
  • 43
  • PDF
Elliptic genera and quantum field theory
  • 412
  • PDF
K3 Surfaces, N=4 Dyons, and the Mathieu Group M24
  • 132
  • PDF
Atlas of finite groups : maximal subgroups and ordinary characters for simple groups
  • 567
$ \mathcal{N} = 4 $ superconformal algebra and the entropy of hyperKähler manifolds
  • 16
  • PDF
Vertex Operator Algebras and the Monster
  • 911
...
1
2
3
4
5
...