# Notes on a Class of Paracontact Metric 3-Manifolds

@article{Zamkovoy2020NotesOA, title={Notes on a Class of Paracontact Metric 3-Manifolds}, author={Simeon Zamkovoy}, journal={arXiv: Differential Geometry}, year={2020} }

We study a class of 3-dimensional paracontact metric manifolds and we revise some of the results obtain in \cite{SS}.

## 2 Citations

### A classification of 3-dimensional η-Einstein paracontact metric manifolds

- Mathematics
- 2020

We show that a 3−dimensional η-Einstein paracontact metric manifold is either a manifold with trh2 = 0, flat or of constant ξ−sectional curvature k , −1 and constant φ-sectional curvature −k , 1.

### A Classification of 3-dimensional paracontact metric manifolds with $Q\varphi=\varphi Q$

- Mathematics
- 2019

We show that a $3-$dimensional paracontact manifold on which $Q\varphi =\varphi Q$ is either a manifold with $trh^2=0$, flat or of constant $\xi-$sectional curvature $k\neq-1$ and constant…

## References

SHOWING 1-10 OF 10 REFERENCES

### Non-existence of flat paracontact metric structures in dimension greater than or equal to five

- Mathematics
- 2009

An example of a three dimensional flat paracontact metric manifold with respect to Levi-Civita connection is constructed. It is shown that no such manifold exists for odd dimensions greater than or…

### Contact manifolds in Riemannian geometry

- Mathematics
- 1976

Contact manifolds.- Almost contact manifolds.- Geometric interpretation of the contact condition.- K-contact and sasakian structures.- Sasakian space forms.- Non-existence of flat contact metric…

### Torsion and critical metrics on contact three-manifolds

- Mathematics
- 1990

where <3tt(ώ) denotes the space of all associated Riemannian metrics to the contact form ω. This functional was studied by Blair and Ledger [2] in general dimension. However the three-dimensional…

### Almost paracontact and parahodge structures on manifolds

- MathematicsNagoya Mathematical Journal
- 1985

In this paper we study the paracomplex analogues of almost contact structures, and we introduce and study the notion of parahodge structures on manifolds. In particular, we construct new examples of…

### The decomposition of almost paracontact metric manifolds in eleven classes revisited

- Mathematics
- 2017

This paper is a continuation of our previous work, where eleven basic classes of almost paracontact metric manifolds with respect to the covariant derivative of the structure tensor field were…

### Riemannian Geometry of Contact and Symplectic Manifolds

- Mathematics
- 2002

Preface * 1. Symplectic Manifolds * 2. Principal S1-bundles * 3. Contact Manifolds * 4. Associated Metrics * 5. Integral Submanifolds and Contact Transformations * 6. Sasakian and Cosymplectic…

### Canonical connections on paracontact manifolds

- Mathematics
- 2007

The canonical paracontact connection is defined and it is shown that its torsion is the obstruction the paracontact manifold to be paraSasakian. A $${\mathcal{D}}$$ -homothetic transformation is…

### RICCI CURVATURES OF CONTACT RIEMANNIAN MANIFOLDS

- Mathematics
- 1988

Soit (M, η,g) une variete de Riemann de contact de courbure φ-sectionnelle constante H. Alors les courbures de Ricci satisfont Ric(X,X)+Ric(φX, φX)≤3n−1+(n+1)H pour chaque vecteur unite X∈T x M x∈M,…

### ELEVEN CLASSES OF ALMOST PARACONTACT MANIFOLDS WITH SEMI-RIEMANNIAN METRIC OF (n + 1, n)

- Mathematics
- 2011

### On a class of paracontact metric 3-manifolds

- Mathematics
- 2014

The purpose of this paper is to classify paracontact metric $3$-manifolds $M^3$ such that the Ricci operator $S$ commutes with the endomorhism $\phi$ of its tangent bundle $\Gamma(TM^3)$.