• Corpus ID: 219573296

Normal Reflection Subgroups

@article{Arreche2020NormalRS,
  title={Normal Reflection Subgroups},
  author={Carlos E. Arreche and Nathan Williams},
  journal={arXiv: Combinatorics},
  year={2020}
}
We study normal reflection subgroups of complex reflection groups. Our point of view leads to a refinement of a theorem of Orlik and Solomon to the effect that the generating function for fixed-space dimension over a reflection group is a product of linear factors involving generalized exponents. Our refinement gives a uniform proof and generalization of a recent theorem of the second author. 

NORMAL REFLECTION SUBGROUPS OF COMPLEX REFLECTION GROUPS

We study normal reflection subgroups of complex reflection groups. Our approach leads to a refinement of a theorem of Orlik and Solomon to the effect that the generating function for fixed-space

References

SHOWING 1-10 OF 10 REFERENCES

Quotients et extensions de groupes de réflexion

Abstract. We give a geometric description of a certain class of epimorphisms between complex reflection groups. We classify these epimorphisms, which can be interpreted as “morphisms” between the

Twisted Invariant Theory for Reflection Groups

Abstract Let G be a finite reflection group acting in a complex vector space V = ℂ r , whose coordinate ring will be denoted by S. Any element γ ∈ GL(V) which normalises G acts on the ring SG of

Invariant derivations and differential forms for reflection groups

Classical invariant theory of a complex reflection group W beautifully describes the W ‐invariant polynomials, the W ‐invariant differential forms, and the relative invariants of any W

Invariants of Finite Groups Generated by Reflections

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and

The cohomology of compact Lie groups

Let $G$ be a compact Lie group with a maximal torus $T$. Based on a presentation of the integral cohomology ring $H^{\ast }(G/T)$ of the flag manifold $G/T$ in \cite{DZ1} we have presented in

Über die Topologie der Gruppen-Mannigfaltigkeiten und ihrer Verallgemeinerungen

In der geschlossenen und orientierbaren Mannigfaltigkeit M sei eine „stetige Multiplikation“ erklart, das heist: jedem geordneten Punktepaar (φ, q) von M ist als „Produkt“ ein Punkt φq von M

Combinatorial aspects of the Poincaré polynomial associated with a reflection group

  • Contemporary Mathematics
  • 1994

The Betti numbers of the exceptional simple Lie groups

  • Proceedings of the international congress of Mathematicians
  • 1950