Corpus ID: 202537345

Nonnegative solutions for the fractional Laplacian involving a nonlinearity with zeros

@article{Alarcn2019NonnegativeSF,
  title={Nonnegative solutions for the fractional Laplacian involving a nonlinearity with zeros},
  author={S. Alarc{\'o}n and L. Iturriaga and Antonella Ritorto},
  journal={arXiv: Analysis of PDEs},
  year={2019}
}
  • S. Alarcón, L. Iturriaga, Antonella Ritorto
  • Published 2019
  • Mathematics
  • arXiv: Analysis of PDEs
  • We study the nonlocal nonlinear problem \begin{equation}\label{ppp} \left\{ \begin{array}[c]{lll} (-\Delta)^s u = \lambda f(u) & \mbox{in }\Omega, \\ u=0&\mbox{on } \mathbb{R}^N\setminus\Omega, \end{array} \right. \tag{$P_{\lambda}$} \end{equation} where $\Omega$ is a bounded smooth domain in $\mathbb{R}^N$\!,\,$N>2s$,\,$0<s<1$; $f:\mathbb{R}\rightarrow [0,\infty)$ is a nonlinear continuous function such that $f(0)=f(1)=0$ and $f(t)\sim |t|^{p-1}t$ as $t\rightarrow 0^+$, with $2<p+1<2^*_s$; and… CONTINUE READING

    References

    SHOWING 1-10 OF 21 REFERENCES
    Multiplicity solutions for fully nonlinear equationinvolving nonlinearity with zeros
    • 2
    The Pohozaev Identity for the Fractional Laplacian
    • 190
    • PDF
    The fractional Cheeger problem
    • 80
    • PDF
    Semilinear elliptic equations and nonlinearities with zeros
    • 1
    Variational Methods for Nonlocal Fractional Problems
    • 329
    • PDF
    Positive solutions of asymptotically linear elliptic eigenvalue problems
    • 124
    • PDF