Nonlinear chiral dispersive waves

@article{Lakshmanan1974NonlinearCD,
  title={Nonlinear chiral dispersive waves},
  author={M. Lakshmanan},
  journal={Journal of Physics A: Mathematical, Nuclear and General},
  year={1974},
  volume={7},
  pages={889-897}
}
  • M. Lakshmanan
  • Published 1974
  • Physics
  • Journal of Physics A: Mathematical, Nuclear and General
Whitham's theory of nonlinear water waves is applied to a classical field with the lagrangian density L=1/2((( delta mu phi )( delta mu phi )-m2 phi 2)/(1+ lambda phi 2)). This is the isoscalar analogue of a chiral invariant SU(2)(X)SU(2) lagrangian with symmetry breaking term included. The corresponding field equation admits simple harmonic plane-wave solutions. The author found that the important field quantities of these waves, namely the wavenumber k and amplitude A obey a system of first… Expand
1 Citations
Dispersive phi4 wave propagation

References

SHOWING 1-10 OF 10 REFERENCES
Group velocity and nonlinear dispersive wave propagation
  • W. Hayes
  • Mathematics
  • Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences
  • 1973
  • 98
Non-linear dispersive waves
  • G. Whitham
  • Mathematics
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
  • 1965
  • 475
Variational methods and applications to water waves
  • G. Whitham
  • Mathematics
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
  • 1967
  • 469
Dynamics of a nonlinear field
  • 15
On a unique nonlinear oscillator
  • 149
  • PDF