Nonlinear Statistical Spline Smoothers for Critical Spherical Black Hole Solutions in 4-Dimension
@article{Hatefi2022NonlinearSS, title={Nonlinear Statistical Spline Smoothers for Critical Spherical Black Hole Solutions in 4-Dimension}, author={Ehsan Hatefi and Armin Hatefi}, journal={SSRN Electronic Journal}, year={2022} }
Figures and Tables from this paper
One Citation
Measurement and Analysis of High Frequency Assert Volatility Based on Functional Data Analysis
- EconomicsMathematics
- 2022
Information and communication technology have enabled the collection of high-frequency financial asset time series data. However, the high spatial and temporal resolution nature of these data makes…
References
SHOWING 1-10 OF 44 REFERENCES
Estimation of Critical Collapse Solutions to Black Holes with Nonlinear Statistical Models
- Physics
- 2021
The self-similar gravitational collapse solutions to the Einstein-axion–dilaton system have already been discovered. Those solutions become invariants after combining the spacetime dilation with the…
On critical exponents for self-similar collapse
- PhysicsJournal of High Energy Physics
- 2020
We explore systematically perturbations of self-similar solutions to the Einstein-axion-dilaton system, whose dynamics are invariant under spacetime dilations combined with internal 𝔰𝔩(2 , ℝ)…
On perturbation theory and critical exponents for self-similar systems
- Physics, MathematicsThe European Physical Journal C
- 2021
Gravitational critical collapse in the Einstein-axion-dilaton system is known to lead to continuous self-similar solutions characterized by the Choptuik critical exponent $$\gamma $$ γ . We complete…
Self-similarity in Einstein-Maxwell-dilaton theories and critical collapse
- PhysicsPhysical Review D
- 2018
We study continuously self-similar solutions of four-dimensional Einstein-Maxwell-dilaton theory, with an arbitrary dilaton coupling. Self-similarity is an emergent symmetry of gravitational collapse…
Dimension dependence of the critical exponent in spherically symmetric gravitational collapse
- Physics, Mathematics
- 2005
We study the critical behaviour of spherically symmetric scalar field collapse to black holes in spacetime dimensions other than four. We obtain reliable values for the scaling exponent in the…
Critical exponents and stability at the black hole threshold for a complex scalar field.
- PhysicsPhysical review. D, Particles and fields
- 1995
A linear perturbation analysis of the previously derived complex critical solution of a massless complex scalar field at the threshold for black hole formation shows that this critical solution is unstable via a growing oscillatory mode.
S duality at the black hole threshold in gravitational collapse.
- PhysicsPhysical review. D, Particles and fields
- 1995
A new critical solution is derived that is spherically symmetric and continuously self-similar in classical low energy string theory, at the threshold for black hole formation.
Universality and scaling in gravitational collapse of a massless scalar field.
- PhysicsPhysical review letters
- 1993
Evidence is presented in support of conjectures that (1) the strong-field evolution in the p→p * limit is universal and generates structure on arbitrarily small spatiotemporal scales and (2) the masses of black holes which form satisfy a power law M BH ∞|p-p * | γ , where γ≃0.37 is a universal exponent.
Criticality and bifurcation in the gravitational collapse of a self-coupled scalar field
- Physics
- 1997
We examine the gravitational collapse of a non-linear sigma model in spherical symmetry. There exists a family of continuously self-similar solutions parameterized by the coupling constant of the…
Critical Phenomena in Gravitational Collapse
- PhysicsLiving reviews in relativity
- 1999
This review gives an introduction to the phenomena, tries to summarize the essential features of what is happening, and then presents extensions and applications of this basic scenario.