Nonlinear Dynamic Modeling for High Performance Control of a Quadrotor


In this paper, we present a detailed dynamic and aerodynamic model of a quadrotor that can be used for path planning and control design of high performance, complex and aggressive manoeuvres without the need for iterative learning techniques. The accepted nonlinear dynamic quadrotor model is based on a thrust and torque model with constant thrust and torque coefficients derived from static thrust tests. Such a model is no longer valid when the vehicle undertakes dynamic manoeuvres that involve significant displacement velocities. We address this by proposing an implicit thrust model that incorporates the induced momentum effects associated with changing airflow through the rotor. The proposed model uses power as input to the system. To complete the model, we propose a hybrid dynamic model to account for the switching between different vortex ring states of the rotor.

8 Figures and Tables

Citations per Year

Citation Velocity: 9

Averaging 9 citations per year over the last 3 years.

Learn more about how we calculate this metric in our FAQ.

Cite this paper

@inproceedings{Bangura2012NonlinearDM, title={Nonlinear Dynamic Modeling for High Performance Control of a Quadrotor}, author={Moses Bangura and Robert Mahony}, year={2012} }