Nonexistence of positive solutions for a class of p-Laplacian boundary value problems

Abstract

We prove the nonexistence of positive radial solutions for the problem  −∆pu = λf (u) in Ω, u = 0 on ∂Ω, where ∆p denotes the p-Laplacian, p > 1, Ω is a ball or an annulus in RN ,N > 1, f : [0, ∞) → R is at least p-linear, f (0) < 0, and is not required to be increasing or to have exactly one zero. Our results extend previous nonexistence results in the… (More)
DOI: 10.1016/j.aml.2013.12.013

Cite this paper

@article{Hai2014NonexistenceOP, title={Nonexistence of positive solutions for a class of p-Laplacian boundary value problems}, author={D. D. Hai}, journal={Appl. Math. Lett.}, year={2014}, volume={31}, pages={12-15} }