x with holomorphic initial data possessing nonnegative Taylor coefficients around the origin. For the KdV equation with initial value u(0, x) = u0(x), we show that there is no solution holomorphic in any neighbourhood of (t, x) = (0, 0) in C unless u0(x) = a0 + a1x. This also furnishes a nonexistence result for a class of y-independent solutions of the KP… (More)

Global solutions for the kdv equation with unbounded data

C. E. Kenig, G. Ponce, L. Vega

J. Diff. Eqns,

1997

2 Excerpts

Solitons, Nonlinear Evolution Equations and Inverse Scattering, volume 149 of London Mathematical Society Lecture Notes in Mathematics

M. J. Ablowitz, P. A. Clarkson

1991

1 Excerpt

The Painlevé property for partial differential equations

J. Weiss, M. Tabor, G. Carnevale

J. Math. Phys.,

1983

1 Excerpt

Solitons and the Inverse Scattering Transform

M. J. Ablowitz, H. Segur

SIAM, Philadelphia,

1981

1 Excerpt

A connection between nonlinear evolution equations and ordinary differential equations of P-type I and II

M. J. Ablowitz, A. Ramani, H. Segur

J. Math. Phys.,

1980

1 Excerpt

Nonlinear evolution equations and ordinary differential equations of Painlevé

M. J. Ablowitz, A. Ramani, H. Segur

type. Lett. Nuovo Cim.,

1978

1 Excerpt

Similar Papers

Loading similar papers…

Cite this paper

@inproceedings{Joshi2008NonexistenceRF,
title={Nonexistence Results for the Korteweg-deVries and Kadomtsev-Petviashvili Equations},
author={Nalini Joshi and Johannes Petersen and Luke M. Schubert},
year={2008}
}