Noncommutative Geometry and Matrix Theory: Compactification on Tori

@article{Connes1997NoncommutativeGA,
  title={Noncommutative Geometry and Matrix Theory: Compactification on Tori},
  author={A. Connes and M. Douglas and A. Schwarz},
  journal={Journal of High Energy Physics},
  year={1997},
  volume={9802},
  pages={003}
}
We study toroidal compactification of Matrix theory, using ideas and results of noncommutative geometry. We generalize this to compactification on the noncommutative torus, explain the classification of these backgrounds, and argue that they correspond in supergravity to tori with constant background three-form tensor field. The paper includes an introduction for mathematicians to the IKKT formulation of Matrix theory and its relation to the BFSS Matrix theory. 
1,508 Citations

Paper Mentions

Matrix theory on noncommutative torus
  • 61
  • PDF
Differential and Complex Geometry of Two-Dimensional Noncommutative Tori
  • 51
  • PDF
D-branes and the noncommutative torus
  • 648
  • PDF
Compactification of M(atrix) theory on noncommutative toroidal orbifolds
  • 22
  • Highly Influenced
  • PDF
Towards a noncommutative geometric approach to matrix compactification
  • 58
  • Highly Influenced
  • PDF
Noncommutative geometry from strings and branes
  • 242
  • PDF
Twisted Bundle on Noncommutative Space and U(1) Instanton
  • 20
  • Highly Influenced
  • PDF
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 31 REFERENCES
Finite in All Directions
  • 99
  • PDF
Locality and Integration in Topological Field Theory
  • 11
  • PDF
Projective Modules over Higher-Dimensional Non-Commutative Tori
  • 290
  • PDF
D-branes from M-branes
  • 421
  • PDF
Yang-Mills for noncommutative two-tori
  • 224
Gesammelte mathematische Abhandlungen
  • 588
  • PDF
Nucl.Phys
  • Nucl.Phys
  • 1997
Phys
  • Rev. D55
  • 1997
Sci
  • Paris Sér. A-B 290 (1980) A599-A604; M. Pimsner and D. Voiculescu, J. Operator Theory 4 (1980) 93–118; A. Connes and M. Rieffel, “Yang-Mills for noncommutative two-tori,” in Operator Algebras and Mathematical Physics (Iowa City, Iowa, 1985), pp. 237–266, Contemp. Math. Oper. Algebra. Math. Phys. 62,
  • 1988
26 (1985) 1070; R
  • Flume, Ann. Phys. 164 (1985) 189; M. Claudson and M. B. Halpern; Nucl. Phys. B250
  • 1985
...
1
2
3
4
...