Non-parametric Bayesian estimation for multitype branching processes through simulation-based methods

@article{Gonzlez2008NonparametricBE,
  title={Non-parametric Bayesian estimation for multitype branching processes through simulation-based methods},
  author={Miguel Gonz{\'a}lez and Jacinto Mart{\'i}n and Rodrigo Mart{\'i}nez and Manuel Mota},
  journal={Computational Statistics & Data Analysis},
  year={2008},
  volume={52},
  pages={1281-1291}
}
The problem of statistical inference from a Bayesian outlook is studied for the multitype Galton–Watson branching process, considering a non-parametric framework. The only data assumed to be available are each generation’s population size vectors. The Gibbs sampler is used in estimating the posterior distributions of the main parameters of the model, and the predictive distributions for as yet unobserved generations. The algorithm provided is independent of whether the process becomes extinct… CONTINUE READING
9 Citations
15 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 15 references

Markov chain for exploring posterior distribution (with discussion)

  • A. Yakovlev, N. Yanev
  • Ann. Statist
  • 1994
Highly Influential
1 Excerpt

Martingale central limit theorems and asymptotic estimation theory for multitype branching processes

  • S. Asmussen, H. Keiding
  • Adv . in Appl . Probab .
  • 1978
Highly Influential
3 Excerpts

Comparison of methodologies to assess the convergence of Markov Chain Monte Carlo methods

  • S. 957–975. El Adlouni, A. C. Favre, B. Bobe
  • Comput . Statist . Data Anal .
  • 2006
1 Excerpt

coda: output analysis and diagnostics for MCMC. R package version 0.10-7

  • M. Plummer, N. Best, K. Cowles, K. Vines
  • Processes: Modelling and Simulation,
  • 2006
1 Excerpt

Bayesian conjugate analysis of the Galton – Watson process

  • M. Mendoza, E. Gutiérrez-Peña
  • Test
  • 2000
1 Excerpt

Probabilistic Methods for Algorithmic Discrete Mathematics, vol. 16

  • J. Ramirez-Alfonsin, B. Reed
  • Comm. Statist. Simulation Comput
  • 1999

Similar Papers

Loading similar papers…