Non-gravitational acceleration in the trajectory of 1I/2017 U1 (‘Oumuamua)

@article{Micheli2018NongravitationalAI,
  title={Non-gravitational acceleration in the trajectory of 1I/2017 U1 (‘Oumuamua)},
  author={Marco Micheli and Davide Farnocchia and Karen J. Meech and Marc W. Buie and Olivier R. Hainaut and Dina Prialnik and Norbert Sch{\"o}rghofer and H. Weaver and Paul W. Chodas and Jan T. Kleyna and Robert J. Weryk and Richard J. Wainscoat and Harald Ebeling and Jacqueline V. Keane and K. C. Chambers and Detlef Koschny and Anastassios E. Petropoulos},
  journal={Nature},
  year={2018},
  volume={559},
  pages={223-226}
}
Abstract‘Oumuamua (1I/2017 U1) is the first known object of interstellar origin to have entered the Solar System on an unbound and hyperbolic trajectory with respect to the Sun1. Various physical observations collected during its visit to the Solar System showed that it has an unusually elongated shape and a tumbling rotation state1–4 and that the physical properties of its surface resemble those of cometary nuclei5,6, even though it showed no evidence of cometary activity1,5,7. The motion of… 

Figures and Topics from this paper

Anomalous Sun Flyby of 1I/2017 U1 (`Oumuamua)
The findings of Micheli et al. (Nature2018, 559, 223–226) that 1I/2017 U1 (`Oumuamua) showed anomalous orbital accelerations have motivated us to apply an impact model of gravity in search for an
On the Anomalous Acceleration of 1I/2017 U1 ‘Oumuamua
We show that the P ~ 8 hr photometric period and the astrometrically measured A_(ng) ~ 2.5 × 10^(−4) cm s^(−2) non-gravitational acceleration (at r ~ 1.4 au) of the interstellar object 1I/2017
Evidence against non-gravitational acceleration of 1I/2017 U1 ‘Oumuamua
  • J. Katz
  • Physics
    Astrophysics and Space Science
  • 2019
Micheli et al. (Nature 559:223, 2018) reported that a seven-parameter fit to the orbit of 1I/2017 U1 ‘Oumuamua indicated a non-gravitational acceleration in the anti-Solar direction, and attributed
Tidal fragmentation as the origin of 1I/2017 U1 (‘Oumuamua)
The first discovered interstellar object (ISO), ‘Oumuamua (1I/2017 U1) shows a dry and rocky surface, an unusually elongated shape, with short-to-long axis ratio c ∕ a  ≲ 1∕6, a low velocity relative
Evidence that 1I/2017 U1 (‘Oumuamua) was Composed of Molecular Hydrogen Ice
`Oumuamua (I1 2017) was the first macroscopic ($l\sim100\,{\rm m}$) body observed to traverse the inner solar system on an unbound hyperbolic orbit. Its light curve displayed strong periodic
Spin Evolution and Cometary Interpretation of the Interstellar Minor Object 1I/2017 ’Oumuamua
Observations of the first interstellar minor object 1I/2017 'Oumuamua did not reveal direct signs of outgassing that would have been natural if it had volatile-rich composition. However, a recent
New Insights into Interstellar Object 1I/2017 U1 (‘Oumuamua) from SOHO/STEREO Nondetections
Object 1I/2017 U1 (`Oumuamua) is the first interstellar small body ever discovered in the solar system. By the time of discovery, it had already passed perihelion. To investigate the behavior of
On the Spin Dynamics of Elongated Minor Bodies with Applications to a Possible Solar System Analogue Composition for ‘Oumuamua
The first interstellar object, 1I/2017 U1 (‘Oumuamua), exhibited several unique properties, including an extreme aspect ratio, a lack of typical cometary volatiles, and a deviation from a Keplerian
Could Solar Radiation Pressure Explain ‘Oumuamua’s Peculiar Acceleration?
'Oumuamua (1I/2017 U1) is the first object of interstellar origin observed in the solar system. Recently, Micheli et al. reported that 'Oumuamua showed deviations from a Keplerian orbit at a high
Outgassing-induced acceleration of comet 67P/Churyumov-Gerasimenko
Context. Cometary activity affects the orbital motion and rotation state through sublimation-induced forces. The availability of precise rotation-axis orientation and position data from the Rosetta
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 52 REFERENCES
1I/2017 U1 (`Oumuamua) is Hot: Imaging, Spectroscopy and Search of Meteor Activity
1I/2017 U1 (`Oumuamua), a recently discovered asteroid in a hyperbolic orbit, is likely the first macroscopic object of extrasolar origin identified in the solar system. Here, we present imaging and
Tumbling motion of 1I/‘Oumuamua and its implications for the body’s distant past
Models of the Solar System’s evolution show that almost all the primitive material leftover from the formation of the planets was ejected to the interstellar space as a result of dynamical
The tumbling rotational state of 1I/‘Oumuamua
The discovery1 of 1I/2017 U1 (1I/‘Oumuamua) has provided the first glimpse of a planetesimal born in another planetary system. This interloper exhibits a variable colour within a range that is
Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua
During the formation and evolution of the Solar System, significant numbers of cometary and asteroidal bodies were ejected into interstellar space1,2. It is reasonable to expect that the same
1I/'Oumuamua is tumbling
The discovery of 1I/2017 U1 ('Oumuamua) has provided the first glimpse of a planetesimal born in another planetary system. This interloper exhibits a variable colour, within a range that is broadly
A brief visit from a red and extremely elongated interstellar asteroid
TLDR
Observations and analysis of the object 1I/2017 U1 (‘Oumuamua) that demonstrate its extrasolar trajectory, and that enable comparisons to be made between material from another planetary system and from the authors' own, reveal it to be asteroidal with no hint of cometary activity despite an approach within 0.25 astronomical units of the Sun.
Constraints on the Density and Internal Strength of 1I/'Oumuamua
1I/'Oumuamua was discovered by the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS 1) on 19 October 2017. Unlike all previously discovered minor planets this object was determined to
Tumbling motion of 1I/'Oumuamua reveals body's violent past
Models of the Solar System evolution show that almost all the primitive material leftover from the formation of the planets was ejected to the interstellar space as a result of dynamical
Interstellar Interloper 1I/2017 U1: Observations from the NOT and WIYN Telescopes
We present observations of the interstellar interloper 1I/2017 U1 ('Oumuamua) taken during its 2017 October flyby of Earth. The optical colors B-V = 0.70$\pm$0.06, V-R = 0.45$\pm$0.05, overlap those
The Excited Spin State of 1I/2017 U1 `Oumuamua
We show that `Oumuamua's excited spin could be in a high energy LAM state, which implies that its shape could be far from the highly elongated shape found in previous studies. CLEAN and ANOVA
...
1
2
3
4
5
...