Non-concentration of the chromatic number of a random graph

@article{Heckel2019NonconcentrationOT,
  title={Non-concentration of the chromatic number of a random graph},
  author={A. Heckel},
  journal={arXiv: Combinatorics},
  year={2019}
}
  • A. Heckel
  • Published 2019
  • Mathematics
  • arXiv: Combinatorics
  • We show that the chromatic number of $G_{n, \frac 12}$ is not concentrated on fewer than $n^{\frac 14 - \varepsilon}$ consecutive values. This addresses a longstanding question raised by Erdős and several other authors. 
    2 Citations
    The Chromatic Number of Dense Random Block Graphs
    • PDF
    Asymptotic performance of the Grimmett-McDiarmid heuristic
    • PDF

    References

    SHOWING 1-10 OF 22 REFERENCES
    The chromatic number of random graphs
    • 376
    The concentration of the chromatic number of random graphs
    • 81
    • Highly Influential
    • PDF
    Sharp concentration of the chromatic number on random graphsGn, p
    • 162
    • Highly Influential
    On the Concentration of the Domination Number of the Random Graph
    • 20
    • PDF
    The two possible values of the chromatic number of a random graph
    • 98
    • PDF
    Random graphs
    • A. Frieze
    • Mathematics, Computer Science
    • SODA '06
    • 2006
    • 6,031
    • PDF
    How Sharp is the Concentration of the Chromatic Number?
    • B. Bollobás
    • Mathematics, Computer Science
    • Comb. Probab. Comput.
    • 2004
    • 11
    • Highly Influential
    The chromatic number of dense random graphs
    • A. Heckel
    • Computer Science, Mathematics
    • Random Struct. Algorithms
    • 2018
    • 7
    • PDF
    The t-Stability Number of a Random Graph
    • 12
    • PDF
    A note on the chromatic number of a dense random graph
    • 12