Non-commutative circuits and the sum-of-squares problem

@article{Hrubes2010NoncommutativeCA,
  title={Non-commutative circuits and the sum-of-squares problem},
  author={Pavel Hrubes and Avi Wigderson and Amir Yehudayoff},
  journal={Electronic Colloquium on Computational Complexity (ECCC)},
  year={2010},
  volume={17},
  pages={21}
}
We initiate a direction for proving lower bounds on the size of non-commutative arithmetic circuits. This direction is based on a connection between lower bounds on the size of <i>non-commutative</i> arithmetic circuits and a problem about <i>commutative</i> degree four polynomials, the classical sum-of-squares problem: find the smallest n such that there exists an identity (x<sub>1</sub><sup>2</sup>+x<sub>2</sub><sup>2</sup>+•• + x<sub>k</sub><sup>2</sup>)• (y<sub>1</sub>^2+y<sub>2</sub><sup>2… CONTINUE READING
Highly Cited
This paper has 33 citations. REVIEW CITATIONS

From This Paper

Topics from this paper.

Citations

Publications citing this paper.
Showing 1-10 of 24 extracted citations

References

Publications referenced by this paper.
Showing 1-6 of 6 references

Über die Komposition der quadratischen Formen

  • A. Hurwitz
  • Math. Ann.,
  • 1923
Highly Influential
5 Excerpts

Lineare scharen orthogonalen matrizen

  • J. Radon
  • Abh. Math. Sem. Univ. Hamburg
  • 1922
Highly Influential
5 Excerpts

Die berechnungskomplexitat von elementarsymmetrischen funktionen und von interpolationskoeffizienten

  • V. Strassen
  • Numerische Mathematik
  • 1973
Highly Influential
5 Excerpts

Similar Papers

Loading similar papers…