• Corpus ID: 119312988

Non-Integrable Pfaffian Systems

  title={Non-Integrable Pfaffian Systems},
  author={Antonio Kumpera},
  journal={arXiv: Differential Geometry},
  • A. Kumpera
  • Published 9 August 2016
  • Mathematics
  • arXiv: Differential Geometry
We discuss a recurrent geometrical method, due to \'Elie Cartan and von Weber ([1],[11]) enabling us to determine, step by step, the maximal integral manifolds of a not necessarily integrable nor regular Pfaffian system. The dimensions of such integral manifolds can, of course, vary from point to point but more so can vary at a given point it depending upon the choice of their recurrent buildup. When the system is regular and integrable then, of course, we obtain the maximal integral leaves of… 

Figures from this paper

On the integrability problem for systems of partial differential equations in one unknown function, I
  • A. Kumpera
  • Mathematics
    Proceedings of the International Geometry Center
  • 2019
We discuss the integration problem for systems of partial differential equations in one unknown function and special attention is given to the first order systems. The Grassmannian contact structures
On the local equivalence of partial differential equations
In all the practical applications of partial differential equations, what is mostly needed and what is in fact hardest to obtains are the solutions of the system or, occasionally, some specific


On the Lie and Cartan Theory of Invariant Differential Systems, II
We start discussing basic properties of Lie groupoids and Lie pseudo-groups in view of applying these techniques to the analysis of Jordan-H\"older resolutions and the subsequent integration of
Automorphisms of flag systems
  • A. Kumpera
  • Mathematics
    Journal of Differential Equations
  • 2019
Kumpera-Ruiz algebras in Goursat flags are optimal in small lengths
Kumpera-Ruiz algebras of germs of Goursat distributions are nilpotent algebras with explicitly computable orders of nilpotence. At some points, called tangential, these orders coincide with the
Multi-flag systems and ordinary differential equations
Abstract We discuss the Monge problem for under-determined systems of ordinary differential equations with an arbitrary degree of freedom and give a sufficient condition, in terms of truncated
Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre
© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1910, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.
Traité d'analyse
Ouvrage de mathematiques pures, ce Traite d’analyse fait la part belle a l’equation celebre de Laplace, dont depend toute la theorie des fonctions analytiques. Mais Emile Picard y aborde egalement
Sur la théorie de Galois et ses diverses généralisations
© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1904, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.
Sur l'intégration de certaines systèmes de Pfaff de caractère deux
Sur l’équivalence locale des systèmes de Pfaff en drapeau
  • F. Gherardelli (Ed.), Monge-Ampère Equations and Related Topics, Firenze 1980, Proceedings, Istit. Naz. Alta Mat. "Francesco Severi", Roma, pages 201–248,
  • 1982