Corpus ID: 119248609

Non-Anomalous Semigroups and Real Numbers

@inproceedings{Binder2016NonAnomalousSA,
  title={Non-Anomalous Semigroups and Real Numbers},
  author={Damon J. Binder},
  year={2016}
}
  • Damon J. Binder
  • Published 2016
  • Mathematics
  • Motivated by intuitive properties of physical quantities, the notion of a non-anomalous semigroup is formulated. These are totally ordered semigroups where there are no `infinitesimally close' elements. The real numbers are then defined as the terminal object in a closely related category. From this definition a field structure on $\mathbb R$ is derived, relating multiplication to morphisms between non-anomalous semigroups. 

    Create an AI-powered research feed to stay up to date with new papers like this posted to ArXiv

    References

    Publications referenced by this paper.
    SHOWING 1-7 OF 7 REFERENCES

    On the theory of ordered semigroups

    • A. A. Vinogradov
    • Math. Rev. vol
    • 1953
    VIEW 4 EXCERPTS
    HIGHLY INFLUENTIAL

    Die Axiome der Quantität und die Lehre vom Mass, Ber

    • O. Hölder
    • Verh. Sächs. Ges. Wiss. Leizig, Math. Phys. Cl
    • 1901
    VIEW 3 EXCERPTS
    HIGHLY INFLUENTIAL

    On ordered semigroups

    • N. L. Alimov
    • 1950

    Die Axiome der Quantität und die Lehre vom Mass

    • O. Hölder
    • Ber . Verh . Sächs . Ges . Wiss . Leizig , Math . Phys . Cl .
    • 1901