Nodamura virus RNA replication in Saccharomyces cerevisiae: heterologous gene expression allows replication-dependent colony formation.

Abstract

Nodamura virus (NoV) and Flock House virus (FHV) are members of the family Nodaviridae. The nodavirus genome is composed of two positive-sense RNA segments: RNA1 encodes the viral RNA-dependent RNA polymerase and RNA2 encodes the capsid protein precursor. A small subgenomic RNA3, which encodes nonstructural proteins B1 and B2, is transcribed from RNA1 during RNA replication. Previously, FHV was shown to replicate both of its genomic RNAs and to transcribe RNA3 in transiently transfected yeast cells. FHV RNAs and their derivatives could also be expressed from plasmids containing RNA polymerase II promoters. Here we show that all of these features can be recapitulated for NoV, the only nodavirus that productively infects mammals. Inducible plasmid-based systems were used to characterize the RNA replication requirements for NoV RNA1 and RNA2 in Saccharomyces cerevisiae. Induced NoV RNA1 replication was robust. Three previously described NoV RNA1 mutants behaved in yeast as they had in mammalian cells. Yeast colonies were selected from cells expressing NoV RNA1, and RNA2 replicons that encoded yeast nutritional markers, from plasmids. Unexpectedly, these NoV RNA replication-dependent yeast colonies were recovered at frequencies 10(4)-fold lower than in the analogous FHV system. Molecular analysis revealed that some of the NoV RNA replication-dependent colonies contained mutations in the NoV B2 open reading frame in the replicating viral RNA. In addition, we found that NoV RNA1 could support limited replication of a deletion derivative of the heterologous FHV RNA2 that expressed the yeast HIS3 selectable marker, resulting in formation of HIS+ colonies.

5 Figures and Tables

Cite this paper

@article{Price2005NodamuraVR, title={Nodamura virus RNA replication in Saccharomyces cerevisiae: heterologous gene expression allows replication-dependent colony formation.}, author={Brendan D. Price and Lance D. Eckerle and L. Andrew Ball and Kyle L. Johnson}, journal={Journal of virology}, year={2005}, volume={79 1}, pages={495-502} }