New results on the stopping time behaviour of the Collatz 3x + 1 function
@article{Winkler2015NewRO, title={New results on the stopping time behaviour of the Collatz 3x + 1 function}, author={M. Winkler}, journal={arXiv: General Mathematics}, year={2015} }
Let $\sigma_n=\lfloor1+n\cdot\log_23\rfloor$. For the Collatz 3x + 1 function exists for each $n\in\mathbb{N}$ a set of different residue classes $(\text{mod}\ 2^{\sigma_n})$ of starting numbers $s$ with finite stopping time $\sigma(s)=\sigma_n$. Let $z_n$ be the number of these residue classes for each $n\geq0$ as listed in the OEIS as A100982. It is conjectured that for each $n\geq4$ the value of $z_n$ is given by the formula \begin{align*} z_n=\frac{(m+n-2)!}{m!\cdot(n-2)!}-\sum_{i=2}^{n-1… CONTINUE READING
Figures from this paper
Figures
3 Citations
References
SHOWING 1-10 OF 10 REFERENCES
On the structure and the behaviour of Collatz 3n + 1 sequences - Finite subsequences and the role of the Fibonacci sequence
- Mathematics
- 2014
- 4
- PDF
Iteration of the number-theoretic function f(2n) = n, f(2n + 1) = 3n + 2
- Mathematics
- 1977
- 62
- Highly Influential
Über die Struktur und das Wachstumsverhalten von Collatz 3n + 1 Folgen
- Mike Winkler, Ernst-Abbe-Weg
- 2014
Die Konstruktion der speziellen Baumstruktur
- 2010
Über das Stoppzeit-Verhalten der Collatz-Iteration, October 2010. (http://mikewinkler.co.nf/collatz algorithm 2010.pdf
- 2010
The PARI Group -PARI/GP Version
Über das Stoppzeit-Verhalten der Collatz-Iteration