Corpus ID: 117814996

New results on the stopping time behaviour of the Collatz 3x + 1 function

@article{Winkler2015NewRO,
  title={New results on the stopping time behaviour of the Collatz 3x + 1 function},
  author={M. Winkler},
  journal={arXiv: General Mathematics},
  year={2015}
}
  • M. Winkler
  • Published 2015
  • Mathematics
  • arXiv: General Mathematics
  • Let $\sigma_n=\lfloor1+n\cdot\log_23\rfloor$. For the Collatz 3x + 1 function exists for each $n\in\mathbb{N}$ a set of different residue classes $(\text{mod}\ 2^{\sigma_n})$ of starting numbers $s$ with finite stopping time $\sigma(s)=\sigma_n$. Let $z_n$ be the number of these residue classes for each $n\geq0$ as listed in the OEIS as A100982. It is conjectured that for each $n\geq4$ the value of $z_n$ is given by the formula \begin{align*} z_n=\frac{(m+n-2)!}{m!\cdot(n-2)!}-\sum_{i=2}^{n-1… CONTINUE READING
    3 Citations

    Figures from this paper

    References

    SHOWING 1-10 OF 10 REFERENCES
    On the Collatz $3n+1$ algorithm
    • 33
    • PDF
    ON A STOPPING TIME ALGORITHM OF THE 3n + 1 FUNCTION
    • 3
    • Highly Influential
    • PDF
    Iteration of the number-theoretic function f(2n) = n, f(2n + 1) = 3n + 2
    • 62
    • Highly Influential
    Über die Struktur und das Wachstumsverhalten von Collatz 3n + 1 Folgen
    • Mike Winkler, Ernst-Abbe-Weg
    • 2014
    Die Konstruktion der speziellen Baumstruktur
    • 2010
    A stopping time problem on the positive integers
    • 110
    • Highly Influential
    • PDF
    Über das Stoppzeit-Verhalten der Collatz-Iteration, October 2010. (http://mikewinkler.co.nf/collatz algorithm 2010.pdf
    • 2010
    The PARI Group -PARI/GP Version
      Über das Stoppzeit-Verhalten der Collatz-Iteration