New results in the packing of equal circles in a square

@article{Maranas1995NewRI,
  title={New results in the packing of equal circles in a square},
  author={Costas D. Maranas and Christodoulos A. Floudas and Panos M. Pardalos},
  journal={Discrete Mathematics},
  year={1995},
  volume={142},
  pages={287-293}
}
The problem of nding the maximum diameter of n equal mutually disjoint circles inside a unit square is addressed in this paper. Exact solutions exist for only n = 1; : : : ; 9; 10; 16; 25; 36 while for other n only conjectural solutions have been reported. In this work a max{min optimization approach is introduced which matches the best reported solutions in the literature for all n 30, yields a better connguration for n = 15, and provides new results for n = 28 and 29. 

From This Paper

Topics from this paper.

Citations

Publications citing this paper.
Showing 1-10 of 37 extracted citations

References

Publications referenced by this paper.
Showing 1-10 of 17 references

The packing of equal circles in a square

M. Goldberg
Math. Mag. 43 • 1970
View 10 Excerpts
Highly Influenced

Some progress in the packing of equal circles in a square

Discrete Mathematics • 1990
View 4 Excerpts
Highly Influenced

A better packing of ten equal circles in a square

Discrete Mathematics • 1989
View 5 Excerpts
Highly Influenced

Con gurations optimales de disques dans un polygone regulier

R. Milano
M emoire de Licence, Universit e Libre de Bruxelles • 1987
View 5 Excerpts
Highly Influenced

Die dichteste Packung von 25 Kreisen in einem Quadrat

G. Wengerodt
Ann. Univ. Sci. Budapest E otvos Sect. Math. 30 • 1987
View 7 Excerpts
Highly Influenced

Die dichteste Packung von 36 Kreisen in einem Quadrat

K. Kirchner, G. Wengerodt
Beitrage Algebra Geom. 25 • 1987
View 7 Excerpts
Highly Influenced

Die dichteste Packung von 16 Kreisen in einem Quadrat

G. Wengerodt
Beitrage Algebra Geom. 16 • 1983
View 7 Excerpts
Highly Influenced

On a geometric extremum problem

J. Schaer, A. Meir
Canad. Math. Bull. 8 • 1965
View 7 Excerpts
Highly Influenced

The densest packing of 9 circles in a square

J. Schaer
Canad. Math. Bull. 8 • 1965
View 7 Excerpts
Highly Influenced

Similar Papers

Loading similar papers…