New cannabimimetic indazole derivatives, N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide (AB-PINACA) and N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide (AB-FUBINACA) identified as designer drugs in illegal products

@article{Uchiyama2012NewCI,
  title={New cannabimimetic indazole derivatives, N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide (AB-PINACA) and N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide (AB-FUBINACA) identified as designer drugs in illegal products},
  author={Nahoko Uchiyama and Satoru Matsuda and Daigo Wakana and Ruri Kikura-Hanajiri and Yukihiro Goda},
  journal={Forensic Toxicology},
  year={2012},
  volume={31},
  pages={93-100}
}
Two new cannabimimetic indazole derivatives, N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide (AB-PINACA, 1) and N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide (AB-FUBINACA, 2), have been identified as designer drugs in illegal products. These identifications were based on liquid chromatography–mass spectrometry, gas chromatography–mass spectrometry, high-resolution mass spectrometry, and nuclear magnetic resonance spectroscopy. Because… 
Four types of cannabimimetic indazole and indole derivatives, ADB-BINACA, AB-FUBICA, ADB-FUBICA, and AB-BICA, identified as new psychoactive substances
TLDR
Four cannabimimetic indazole and indole derivatives in new illegal psychoactive substances seized from a clandestine laboratory in China are identified, the first report of their presence in illegal products.
Two new-type cannabimimetic quinolinyl carboxylates, QUPIC and QUCHIC, two new cannabimimetic carboxamide derivatives, ADB-FUBINACA and ADBICA, and five synthetic cannabinoids detected with a thiophene derivative α-PVT and an opioid receptor agonist AH-7921 identified in illegal products
We identified two new-type cannabimimetic quinolinyl carboxylates, quinolin-8-yl 1-pentyl-(1H-indole)-3-carboxylate (QUPIC, 1) and quinolin-8-yl 1-(cyclohexylmethyl)-1H-indole-3-carboxylate (QUCHIC,
The synthesis and characterization of the 'research chemical' N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(cyclohexylmethyl)-3-(4-fluorophenyl)-1H-pyrazole-5-carboxamide (3,5-AB-CHMFUPPYCA) and differentiation from its 5,3-regioisomer.
TLDR
The pyrazole core indicates a bioisosteric replacement of an indazole ring that is frequently associated with synthetic cannabinoids of the PINACA, FUBINACA, and CHMINACA series and both isomers were synthesized using two specific routes which supported the correct identification of the 'research chemical' as 3,5-AB-CHMFUPPYCA.
Two new synthetic cannabinoids, AM-2201 benzimidazole analog (FUBIMINA) and (4-methylpiperazin-1-yl)(1-pentyl-1H-indol-3-yl)methanone (MEPIRAPIM), and three phenethylamine derivatives, 25H-NBOMe 3,4,5-trimethoxybenzyl analog, 25B-NBOMe, and 2C-N-NBOMe, identified in illegal products
Two new types of synthetic cannabinoids, an AM-2201 benzimidazole analog (FUBIMINA, 1) and (4-methylpiperazin-1-yl)(1-pentyl-1H-indol-3-yl)methanone (MEPIRAPIM, 2), and three newly emerged
Identification of three cannabimimetic indazole and pyrazole derivatives, APINACA 2H-indazole analogue, AMPPPCA, and 5F-AMPPPCA.
TLDR
Analytical properties of three cannabimimetic indazole and pyrazole derivatives seized from a clandestine laboratory are reported, making this the first report on these compounds.
Identification and analytical characterization of four synthetic cannabinoids ADB-BICA, NNL-1, NNL-2, and PPA(N)-2201.
TLDR
The analytical properties and structure elucidation of four cannabimimetic derivatives in seized material are reported on, making this the first report on these compounds.
Structure elucidation of the designer drug N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-3-(4-fluorophenyl)-pyrazole-5-carboxamide and the relevance of predicted (13) C NMR shifts - a case study.
The detailed structure elucidation process of the new cannabimimetic designer drug, N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-3-(4-fluorophenyl)-pyrazole-5-carboxamide, with a
A new pyrazole-carboxamide type synthetic cannabinoid AB-CHFUPYCA [N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(cyclohexylmethyl)-3-(4-fluorophenyl)-1H-pyrazole-5-carboxamide] identified in illegal products
A new pyrazole-carboxamide type synthetic cannabinoid, AB-CHFUPYCA (1), was detected in illegal herbal products by our ongoing survey in Japan. The structure of 1 was identified by gas
[1-(Tetrahydropyran-4-ylmethyl)-1H-indol-3-yl]-(2,2,3,3-tetramethylcyclopropyl)methanone: a new synthetic cannabinoid identified on the drug market
A new synthetic cannabinoid, [1-(tetrahydropyran-4-ylmethyl)-1H-indol-3-yl]-(2,2,3,3-tetramethylcyclopropyl)methanone, was identified in several resinous samples seized by law enforcement officers in
...
...

References

SHOWING 1-10 OF 17 REFERENCES
Identification of two new-type synthetic cannabinoids, N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA), and detection of five synthetic cannabinoids, AM-1220, AM-2233, AM-1241, CB-13 (CRA-13), and AM-1248, as designer drugs in
Two new-type synthetic cannabinoids, N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA, 1) and N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (APINACA, 2), have been identified as designer
Identification and quantitation of a benzoylindole (2-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone and a naphthoylindole 1-(5-fluoropentyl-1H-indol-3-yl)-(naphthalene-1-yl)methanone (AM-2201) found in illegal products obtained via the Internet and their cannabimimetic effects evaluated by in vitr
During our careful surveillance of unregulated drugs in January to February 2011, we found two new compounds used as adulterants in herbal products obtained via the Internet. These compounds were
Identification and quantitation of two new naphthoylindole drugs-of-abuse, (1-(5-hydroxypentyl)-1H-indol-3-yl)(naphthalen-1-yl)methanone (AM-2202) and (1-(4-pentenyl)-1H-indol-3-yl)(naphthalen-1-yl)methanone, with other synthetic cannabinoids in unregulated “herbal” products circulated in the Tokyo
During our continual surveillance of unregulated drugs in May–June 2011, we found two new compounds as adulterants in herbal products obtained at shops in the Tokyo area. These compounds were
Identification and quantitation of two benzoylindoles AM-694 and (4-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone, and three cannabimimetic naphthoylindoles JWH-210, JWH-122, and JWH-019 as adulterants in illegal products obtained via the Internet
During our careful surveillance of unregulated drugs, we found five new compounds used as adulterants in herbal and drug-like products obtained via the Internet. These compounds were identified by
Identification and quantitation of two cannabimimetic phenylacetylindoles JWH-251 and JWH-250, and four cannabimimetic naphthoylindoles JWH-081, JWH-015, JWH-200, and JWH-073 as designer drugs in illegal products
Six cannabimimetic indoles have been identified as adulterants in herbal or chemical products being sold illegally in Japan, with four of the compounds being new as adulterants to our knowledge. The
Identification of the cannabimimetic AM-1220 and its azepane isomer (N-methylazepan-3-yl)-3-(1-naphthoyl)indole in a research chemical and several herbal mixtures
Recently, a large number of synthetic cannabinoids have been identified in herbal mixtures. Moreover, an even higher number of cannabimimetic compounds are currently distributed as research chemicals
Identification of a cannabimimetic indole as a designer drug in a herbal product
A cannabimimetic indole has been identified as a new adulterant in a herbal product being sold illegally in Japan for its expected narcotic effect. Liquid chromatography-mass spectrometry and gas
Identification of a cannabinoid analog as a new type of designer drug in a herbal product.
A new type of designer drug, a cannabinoid analog (1), was found in a herbal product distributed on the illegal drug market in Japan in expectation of its narcotic effect. The structure of 1 was
...
...