# New Superbridge Index Calculations from Non-Minimal Realizations

@article{Shonkwiler2022NewSI, title={New Superbridge Index Calculations from Non-Minimal Realizations}, author={Clayton Shonkwiler}, journal={Journal of Knot Theory and Its Ramifications}, year={2022} }

Previous work [22] used polygonal realizations of knots to reduce the problem of computing the superbridge number of a realization to a linear programming problem, leading to new sharp upper bounds on the superbridge index of a number of knots. The present work extends this technique to polygonal realizations with an odd number of edges and determines the exact superbridge index of many new knots, including the majority of the 9-crossing knots for which it was previously unknown and, for the…

## References

SHOWING 1-10 OF 27 REFERENCES

### All Prime Knots Through 10 Crossings Have Superbridge Index ≤ 5

- MathematicsJournal of Knot Theory and Its Ramifications
- 2022

This paper gives new upper bounds on the stick numbers of the knots 9 18 , 10 18 , 10 58 , 10 66 , 10 68 , 10 80 , 10 82 , 10 84 , 10 93 , 10 100 , and 10 152 , as well as on the equilateral stick…

### New Stick Number Bounds from Random Sampling of Confined Polygons

- Computer ScienceExperimental Mathematics
- 2021

A Monte Carlo approach is adopted, producing very large ensembles of random polygons in tight confinement to look for new examples of knots constructed from few segments, yielding either the exact stick number or an improved upper bound for more than 40% of the knots with 10 or fewer crossings.

### GEOMETRIC KNOT SPACES AND POLYGONAL ISOTOPY

- Mathematics
- 1999

The space of n-sided polygons embedded in three-space consists of a smooth manifold in which points correspond to piecewise linear or "geometric" knots, while paths correspond to isotopies which…

### Upper Bounds for Equilateral Stick Numbers

- Mathematics
- 2002

We use algorithms in the software KnotPlot to compute upper bounds for the equilateral stick numbers of all prime knots through 10 crossings, i.e. the least number of equal length line segments it…

### Wirtinger systems of generators of knot groups

- Mathematics
- 2017

We define the {\it Wirtinger number} of a link, an invariant closely related to the meridional rank. The Wirtinger number is the minimum number of generators of the fundamental group of the link…

### A COMPUTATION OF SUPERBRIDGE INDEX OF KNOTS

- Mathematics
- 2002

We show that the list {31, 41, 52, 61, 62, 63, 72, 73, 74, 84, 87, 89} contains all 3-superbridge knots. We also supply the best known estimates of the superbridge index for all prime knots up to…

### Edge number results for piecewise-Linear knots

- Mathematics
- 1998

The minimal number of edges required to form a knot or link of type K is the edge number of K, and is denoted e(K). When knots are drawn with edges, they are appropriately called piecewise-linear or…

### Superbridge and bridge indices for knots

- Mathematics
- 2020

We improve the upper bound on the superbridge index $sb[K]$ of a knot type $[K]$ in terms of the bridge index $b[K]$ from $sb[K] \leq 5b -3$ to $sb[K]\leq 3b[k] - 1$.

### AN INTRODUCTION TO THE SUPERCROSSING INDEX OF KNOTS AND THE CROSSING MAP

- Mathematics
- 2002

This paper is an introduction to supercrossing index for knots and links, which is related to crossing index in the same way that N. Kuiper's superbridge index is related to bridge index. A variety…

### Interactive topological drawing

- Computer Science
- 1998

The research presented here examines topological drawing, a new mode of constructing and interacting with mathematical objects in three-dimensional space, and presents methods for the computer construction and interactive manipulation of a wide variety of knots.