New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7

  title={New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7},
  author={Roman Witu},
  • Roman Witu
  • Published 2007
We give applications of the quasi-Fibonacci numbers of order 7 and the so-called sine-Fibonacci numbers of order 7 and many other new kinds of recurrent sequences to the decompositions of some polynomials. We also present the characteristic equations, generating functions and some properties of all these sequences. Finally, some new Ramanujan-type formulas are generated. 

From This Paper

Figures, tables, and topics from this paper.


Publications citing this paper.


Publications referenced by this paper.
Showing 1-10 of 12 references

Three Ramanujan’s formulas

  • V. S. Shevelev
  • Kvant 6
  • 1988
Highly Influential
8 Excerpts

Warzyński, Quasi-Fibonacci numbers of the seventh order

  • R. Witu la, A. D. S lota
  • J. Integer Seq
  • 2006
Highly Influential
7 Excerpts

Homogeneous polynomials and the minimal polynomial of cos(2π/n)

  • D. Surowski, P. McCombs
  • Missouri J. Math. Sci. 15
  • 2003
1 Excerpt

Calculus Methods in Algebra, Part One, WPKJS

  • R. Grzymkowski, R. Witu la
  • 2000
3 Excerpts

A class of series acceleration formulae for Catalan’s constant

  • D. M. Bradley
  • Ramanujan J. 3
  • 1999
1 Excerpt

The minimal polynomials of cos(2π/n)

  • W. Watkins, J. Zeitlin
  • Amer. Math. Monthly 100
  • 1993
1 Excerpt

A Classical Introduction to Modern Number Theory

  • K. Ireland, M. Rosen
  • Springer Verlag
  • 1982
1 Excerpt

Selected Problems and Theorems in Elementary Mathematics

  • D. O. Shklyarsky, N. N. Chentsov, I. M. Yaglom
  • Arithmetic and Algebra, Mir
  • 1979

Similar Papers

Loading similar papers…