Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection.

Abstract

HIV type 1 (HIV-1) can rapidly escape from neutralizing antibody responses. The genetic basis of this escape in vivo is poorly understood. We compared the pattern of evolution of the HIV-1 env gene between individuals with recent HIV infection whose virus exhibited either a low or a high rate of escape from neutralizing antibody responses. We demonstrate that the rate of viral escape at a phenotypic level is highly variable among individuals, and is strongly correlated with the rate of amino acid substitutions. We show that dramatic escape from neutralizing antibodies can occur in the relative absence of changes in glycosylation or insertions and deletions ("indels") in the envelope; conversely, changes in glycosylation and indels occur even in the absence of neutralizing antibody responses. Comparison of our data with the predictions of a mathematical model support a mechanism in which escape from neutralizing antibodies occurs via many amino acid substitutions, with low cross-neutralization between closely related viral strains. Our results suggest that autologous neutralizing antibody responses may play a pivotal role in the diversification of HIV-1 envelope during the early stages of infection.

4 Figures and Tables

050100'06'07'08'09'10'11'12'13'14'15'16'17
Citations per Year

534 Citations

Semantic Scholar estimates that this publication has 534 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Frost2005NeutralizingAR, title={Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection.}, author={Simon D. W. Frost and Terri Wrin and Davey M. Smith and Sergei L. Kosakovsky Pond and Yang Liu and Ellen E. Paxinos and Colombe Chappey and Justin Galovich and Jeff Beauchaine and Christos J. Petropoulos and Susan J. Little and Douglas D. Richman}, journal={Proceedings of the National Academy of Sciences of the United States of America}, year={2005}, volume={102 51}, pages={18514-9} }