[Network, cellular and molecular mechanisms of plasticity in simple nervous systems].

Abstract

In the present study we will try to single out several principles of the nervous system functioning essential for describing mechanisms of learning and memory basing on our own experimental investigation of cellular mechanisms of memory in the nervous system of gastropod molluscs and literature data: main changes in functioning due to learning occur in effectivity of synaptic inputs and in the intrinsic properties of postsynaptic neurons; due to learning some synaptic inputs of neurons selectively change its effectivity due to pre- and postsynaptic changes, but the induction of plasticity always starts in postsynapse, maintaining of long-term memory in postsynapse is also shown; reinforcement is not related to activity of the neural chain receptor-sensory neuron-interneuron-motoneuron-effector; reinforcement is mediated via activity of modulatory neurons, and in some cases can be exerted by a single neuron; activity of modulatory neurons is necessary for development of plastic modifications of behavior (including associative), but is not needed for recall of conditioned responses. At the same time, the modulatory neurons (in fact they constitute a neural reinforcement system) are necessary for recall of context associative memory; changes due to learning occur at least in two independent loci in the nervous system. A possibility for erasure of memory with participation of nitroxide is experimentally and theoretically based.

Cite this paper

@article{Balaban2011NetworkCA, title={[Network, cellular and molecular mechanisms of plasticity in simple nervous systems].}, author={Pavel M Balaban and Tatiana A. Korshunova}, journal={Uspekhi fiziologicheskikh nauk}, year={2011}, volume={42 4}, pages={3-19} }