Negatively Dependent Bounded Random Variable Probability Inequalities and the Strong Law of Large Numbers

@inproceedings{Amini2000NegativelyDB,
  title={Negatively Dependent Bounded Random Variable Probability Inequalities and the Strong Law of Large Numbers},
  author={Massoud Amini and Arezoo Bozorgnia},
  year={2000}
}
be negatively dependent uniformly bounded random variables with d.f. F(x). In this paperwe obtain bounds for the^ probabilities P(I Y=IXil >_nt) and P(l(pn-pl >e) where pn is the sample pth ^quantile and p is the pth quantile of F(x). Moreover, we show that pn is a strongly consistent estimator of p under mild^ restrictions on F(x) in the neighborhood of p. We also show that (pn converges completely to p. 
3 Citations
10 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 10 references

Some concepts of negative dependence

  • H. W. Block, T. H. Savits, M. Shaked
  • Ann . Probab . V
  • 1982

Some concepts of multivariate dependence

  • H. W. Block, M. L. Ting
  • Comm . Star . Theor . Math . A
  • 1981

Classes of orderings of measures and related correlation inequalities

  • S. Karlin
  • J . Mull . Analysis
  • 1980

Dependent and aging aspects of multivariate survival

  • A. Bozorgnia, R. F. Patterson, R. L. Taylor, E. Brindley, W. Thompson
  • J . Amer . Star . Assoc .
  • 1972

Relationships among some concepts of bivariate dependence

  • J. D. Esary, F. Proschan
  • Ann . Math . Star .
  • 1972

A multivariate definition for increasing hazard rate distributions

  • R. Harris
  • Ann . Math . Star .
  • 1970

Association of random variables with applications

  • J. D. Esary, F. Proschan, D. W. Walkup
  • Ann . Math . Star .
  • 1967

Some convergence theorems for independent random variables

  • Y. S. Chow
  • Ann . Mat . Statist .
  • 1966

Probability inequalities for sums of bounded random variables

  • W. Hoeffding
  • 1963

Some concepts of dependence

  • E. Lehmann
  • Ann . Math . Statist .

Similar Papers

Loading similar papers…