Near-optimal Mean Value Estimates for Multidimensional Weyl Sums

@inproceedings{Parsell2012NearoptimalMV,
  title={Near-optimal Mean Value Estimates for Multidimensional Weyl Sums},
  author={Scott T. Parsell and S. M. PRENDIVILLE and Trevor D. Wooley},
  year={2012}
}
We obtain sharp estimates for multidimensional generalisations of Vinogradov’s mean value theorem for arbitrary translation-dilation invariant systems, achieving constraints on the number of variables approaching those conjectured to be the best possible. Several applications of our bounds are discussed. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 19 references

Multiple trigonometric sums

  • G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov
  • Trudy Mat. Inst. Steklov 151
  • 1980
Highly Influential
13 Excerpts

New estimates for Weyl sums

  • I. M. Vinogradov
  • Dokl. Akad. Nauk SSSR 8
  • 1935
Highly Influential
8 Excerpts

A generalization of Vinogradov’s mean value theorem

  • S. T. Parsell
  • Proc. London Math. Soc. (3) 91
  • 2005
Highly Influential
9 Excerpts

Trigonometric sums in number theory and analysis

  • G. I Arkhipov, V. N. Chubarikov, A. A. Karatsuba
  • Walter de Gruyter, Berlin
  • 2004
Highly Influential
7 Excerpts

Prendiville, Solution-free sets for sums of binary forms, submitted, preprint available as arXiv:1110.1999

  • S M.
  • 1999
Highly Influential
4 Excerpts

The density of integer points on homogeneous varieties

  • W. M. Schmidt
  • Acta Math. 154
  • 1985
Highly Influential
3 Excerpts

On certain sets of integers

  • K. F. Roth
  • J. London Math. Soc. 28
  • 1953
Highly Influential
2 Excerpts

Squareful points of bounded height

  • K. Van Valckenborgh
  • C. R. Math. Acad. Sci. Paris 349
  • 2011
1 Excerpt

Similar Papers

Loading similar papers…