NONEXISTENCE OF BLOW-UP SOLUTION WITH MINIMAL L 2MASS FOR THE CRITICAL GKDV EQUATION

@inproceedings{Martel2002NONEXISTENCEOB,
  title={NONEXISTENCE OF BLOW-UP SOLUTION WITH MINIMAL L 2MASS FOR THE CRITICAL GKDV EQUATION},
  author={Yvan Martel and FRANK MERLE},
  year={2002}
}
In this paper, we prove that there exist no blow-up solutions of the critical generalized Korteweg–de Vries (gKdV) equation with minimal L 2-mass, assuming an L 2-decay on the right on the initial data. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 10 references

Harmonic analysis and nonlinear partial differential equations

  • J. BOURGAIN
  • Proceedings of the International Congress of…
  • 1994
Highly Influential
5 Excerpts

MERLE, A Liouville theorem for the critical generalized Korteweg–de Vries equation

  • Y. MARTEL andF
  • J. Math. Pures Appl
  • 2000

MCKINNEY, Numerical computations of self-similar blow-up solutions of the generalized Korteweg–de Vries equation

  • R.D.B. DIX andW
  • Differential Integral
  • 1998
1 Excerpt

MERLE, Concentration properties of blow-up solutions and instability results for Zakharov equation in dimension two, II

  • L. GLANGETAS andF
  • Comm. Math. Phys.160(),
  • 1994
1 Excerpt

Determination of blow-up solutions with minimal mass for nonlinear Schr̈odinger equations with critical power

  • F. MERLE
  • Duke Math
  • 1993
1 Excerpt

VEGA, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle

  • C. E. KENIG, G. PONCE, andL
  • Comm. Pure Appl
  • 1993

Uniqueness of solutions for the generalized Korteweg–de Vries equation

  • J. GINIBREandY. TSUTSUMI
  • SIAM J. Math
  • 1989
1 Excerpt

On the Cauchy problem for the (generalized) Korteweg–de Vries equation

  • T. KATO
  • Adv. Math. Suppl
  • 1983
1 Excerpt

WEINSTEIN, Nonlinear Schr̈ odinger equations and sharp interpolation estimates

  • M I.
  • Comm. Math. Phys
  • 1982

Well - posedness and scattering results for the generalized Korteweg – de Vries equation via the contraction principle

  • L. VEGA
  • Math . Phys .