NMDA-Receptor-dependent synaptic activation of voltage-dependent calcium channels in basolateral amygdala.

Abstract

Afferent stimulation of pyramidal cells in the basolateral amygdala produced mixed excitatory postsynaptic potentials (EPSPs) mediated by N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors during whole cell current-clamp recordings. In the presence of GABA(A) receptor blockade, the mixed EPSPs recruited a large "all-or-none" depolarizing event. This recruited event was voltage dependent and had a distinct activation threshold. An analogous phenomenon elicited by exogenous glutamate in the presence of tetrodotoxin (TTX) was blocked by Cd(2+), suggesting that the event was a Ca(2+) spike. Selective glutamatergic blockade revealed that these Ca(2+) spikes were recruited readily by single afferent stimulus pulses that elicited NMDA EPSPs. In contrast, non-NMDA EPSPs induced by single stimuli failed to elicit the Ca(2+) spike even at maximal stimulus intensities although these non-NMDA EPSPs depolarized the soma more effectively than mixed EPSPs. Elongation of non-NMDA EPSPs by cyclothiazide or brief trains of stimulation were also unable to elicit the Ca(2+) spike. Blockade of K(+) channels with intracellular Cs(+) enabled single non-NMDA EPSPs to activate the Ca(2+) spike. The finding that voltage-dependent calcium channels are activated preferentially by NMDA-receptor-mediated EPSPs provides a mechanism for NMDA-receptor-dependent plasticity independent of Ca(2+) influx through the NMDA receptor.

Extracted Key Phrases

Cite this paper

@article{Calton2000NMDAReceptordependentSA, title={NMDA-Receptor-dependent synaptic activation of voltage-dependent calcium channels in basolateral amygdala.}, author={J L Calton and M H Kang and W A Wilson and S D Moore}, journal={Journal of neurophysiology}, year={2000}, volume={83 2}, pages={685-92} }