N ov 2 00 0 A canonical hyperkähler metric on the total space of a cotangent bundle

@inproceedings{Kaledin2000NO2,
  title={N ov 2 00 0 A canonical hyperk{\"a}hler metric on the total space of a cotangent bundle},
  author={D. Kaledin},
  year={2000}
}
  • D. Kaledin
  • Published 2000
A canonical hyperkähler metric on the total space T * M of a cotan-gent bundle to a complex manifold M has been constructed recently by the author in [K]. This paper presents the results of [K] in a streamlined and simplified form. The only new result is an explicit formula obtained for the case when M is an Hermitian symmetric space. 

From This Paper

Figures and tables from this paper.
3 Citations
13 References
Similar Papers

Citations

Publications citing this paper.

References

Publications referenced by this paper.
Showing 1-10 of 13 references

Hyperkähler metrics on cotangent bundles

  • B Feix
  • Hyperkähler metrics on cotangent bundles
  • 1999

Hyperkähler metrics on total spaces of cotangent bundles

  • D Kaledin
  • Math. Phys. Series
  • 1999

Hyperkähler metrics on cotangent bundles of Hermitian symmetric spaces, in Proc. of the Special Session an Geometry and Physics held at Aarhus University and of the Summer School at Odense University

  • O Biquard, P Gauduchon
  • Lecture Notes in Pure and Applied Mathematics
  • 1995

The structure of quaternionic kähler quotients , in Proc. of the Special Session an Geometry and Physics held at Aarhus University and of the Summer School at Odense University

  • A Dancer, A Swann
  • Lecture Notes in Pure and Applied Mathematics
  • 1995

Instantons on ALE spaces, quiver varieties, and Kac- Moody algebras, Duke Math

  • H Nakajima
  • J
  • 1994

A hyper-Kählerian structure on coadjoint orbits of a semisimple complex group

  • P B Kronheimer
  • J. of LMS
  • 1990

Instantons and the nilpotent variety

  • P B Kronheimer
  • J. Diff. Geom
  • 1990

Einstein manifolds

  • A Besse
  • Einstein manifolds
  • 1987

Hyperkähler metrics and supersymmetry

  • Hklr ] N J Hitchin, A Karlhede, U Lindström, M Roček
  • Comm. Math. Phys
  • 1987

Differential geometry of quaternionic manifolds

  • S M Salamon
  • Ann. Sci. Ec. Norm. Super. Ser. IV
  • 1986

Similar Papers

Loading similar papers…