N-Pulse Homoclinic Orbits in Perturbations of Resonant Hamiltonian Systems

@inproceedings{Wiggins2004NPulseHO,
  title={N-Pulse Homoclinic Orbits in Perturbations of Resonant Hamiltonian Systems},
  author={Stephen Wiggins},
  year={2004}
}
In this pape r we develop an analy t ica l m e t h o d to detect orbi ts d o u b l y a sympto t ic to slow mani fo lds in pe r tu rba t i ons of integrable , two-degree-of f reedom resonan t H a m i l t o n i a n systems. O u r energy-phase method appl ies to bo th H a m i l t o n i a n and diss ipat ive pe r tu rba t i ons and reveals families of mul t i -pulse solu t ions which are not amenab le to Me ln ikov type methods . As an example , we s tudy a t w o m o d e a p p r o x i m a t i o n… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-10 of 46 references

Orbits homoclinic to resonances : the Hamiltonian case Gy 6

rgy Haller, S. L. Wiggins
2002
View 7 Excerpts
Highly Influenced

Global bifurcations in the motion of parametrically excited thin plates

FENG, P.R.Z.C. 8r SETHNA
Nonlin. Dyn • 1993
View 4 Excerpts
Highly Influenced

Global Bifurcations and Chaos - Analytical Methods, Springer-Verlag, New York

S. WIGGINS
1988
View 4 Excerpts
Highly Influenced

I

HALLER, S. G. 8r WIGGINS, Geometry, chaos near resonant equilibria of 3DOF Hamiltonian systems
Theory, submitted to Physica D • 1994
View 2 Excerpts

Normally Hyperbolic Invariant Manifolds in Dynamical Systems, SpringerVerlag, New York

S. WIGGINS
1994
View 1 Excerpt

On the geometry of an atmospheric slow manifold

R. CAMASSA
Physica D • 1994
View 1 Excerpt

Similar Papers

Loading similar papers…