# N = 4 SUPERFIEL PHASE SPACE COORDINATES AND HAMILTONIAN QUANTIZATION

@article{Assaoui2007N4, title={N = 4 SUPERFIEL PHASE SPACE COORDINATES AND HAMILTONIAN QUANTIZATION}, author={Fatna Assaoui and T. Lhallabi}, journal={arXiv: High Energy Physics - Theory}, year={2007} }

The N = 4 superfield phase space coordinates are given in the harmonic superspace. The expressions of the N = 4 classical equations of motion are determined in terms of the spinorial and harmonic supercharges. Furthermore, the N = 4 supersymmetric actions are obtained by means of the fermionic and harmonic functionals. On the other hand, the Hamiltonian quantization is studied by performing the N = 4 supersymmetric action in harmonic subspace in terms of analytic N = 4 superfield phase space…

## References

SHOWING 1-10 OF 11 REFERENCES

### Quantization of Gauge Systems

- Physics
- 1992

This is a systematic study of the classical and quantum theories of gauge systems. It starts with Dirac's analysis showing that gauge theories are constrained Hamiltonian systems. The classical…

### Nucl

- Phys. B 515 (1998) 455; Phys.Lett . B 446
- 1999

### Phys

- Lett. B 55 (1975) 244; Phys. Lett. B 69 (1977) 309; E. S. Fradkin andE. S. Fradkina, Phys. Lett. B 72 (1978) 343; I. A. Batalin and E.S.Fradkin, Phys.Lett . B 122
- 1983

### ) 2709 ; E . S . Fradkin , in Proc . X Winter School of Theoretical Physics Karpacs ( 1973 ) No . 207 , pp 93 ; P . Senjanovic

### Lecture on Quantum Mechanics ( New - York : Yeshiva University Press ) . [ 5 ] P . Senjanovic

- Ann . Phys . Ny Quantization of Gauge System
- 1961

### N = 4 sypersymmetric mechanic superspace

### , “ Superield Quantization ” hep - th / 9708140 . [ 8 ] I . A . Batalin , K . Bering and P . H . Damgaard , Nucl . Phys . B 515 ( 1998 ) 455 E . Deotto and E . Gozzi

- Int . J . Mod . Phys . A
- 2001

### Comm

- Math. Phys. 42
- 1975

### E . Evanov and O . Lechtenfeld , ‘ ‘ N = 4 sypersymmetric mechanic superspace ’ ’ , hep - th / 0307111 . [ 13 ] T . Lhallabi and E . H . Saidi

- Int . Jour . Mod . Phys A
- 1988