Mutants of the Arabidopsis thaliana cation/H+ antiporter AtNHX1 conferring increased salt tolerance in yeast: the endosome/prevacuolar compartment is a target for salt toxicity.

Abstract

Mutants of the plant cation/H(+) antiporter AtNHX1 that confer greater halotolerance were generated by random mutagenesis and selected in yeast by phenotypic complementation. The amino acid substitutions that were selected were conservative and occurred in the second half of the membrane-associated N terminus. AtNHX1 complemented the lack of endogenous ScNHX1 in endosomal protein trafficking assays. Growth enhancement on hygromycin B and vanadate media agreed with a generally improved endosomal/prevacuolar function of the mutated proteins. In vivo measurements by (31)P NMR revealed that wild-type and mutant AtNHX1 transporters did not affect cytosolic or vacuolar pH. Surprisingly, when yeast cells were challenged with lithium, a tracer for sodium, the main effect of the mutations in AtNHX1 was a reduction in the amount of compartmentalized lithium. When purified and reconstituted into proteoliposomes or assayed in intact vacuoles isolated from yeast cells, a representative mutant transporter (V318I) showed a greater cation discrimination favoring potassium transport over that of sodium or lithium. Together, our data suggest that the endosome/prevacuolar compartment is a target for salt toxicity. Poisoning by toxic cations in the endosome/prevacuolar compartment is detrimental for cell functions, but it can be alleviated by improving the discrimination of transported alkali cations by the resident cation/H(+) antiporter.

DOI: 10.1074/jbc.M806203200

9 Figures and Tables

05010020102011201220132014201520162017
Citations per Year

194 Citations

Semantic Scholar estimates that this publication has 194 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Hernndez2009MutantsOT, title={Mutants of the Arabidopsis thaliana cation/H+ antiporter AtNHX1 conferring increased salt tolerance in yeast: the endosome/prevacuolar compartment is a target for salt toxicity.}, author={Agust{\'i}n Hern{\'a}ndez and Xingyu Jiang and Beatriz Cubero and Pedro M. Nieto and Ray Anthony Bressan and Paul Michael Hasegawa and Jos{\'e} Manuel Pardo}, journal={The Journal of biological chemistry}, year={2009}, volume={284 21}, pages={14276-85} }