# Mumford's Degree of Contact and Diophantine Approximations

@article{Ferretti2000MumfordsDO, title={Mumford's Degree of Contact and Diophantine Approximations}, author={Roberto Ferretti}, journal={Compositio Mathematica}, year={2000}, volume={121}, pages={247-262} }

The purpose of this note is to present a somewhat unexpected relation between diophantine approximations and the geometric invariant theory. The link is given by Mumford's degree of contact. We show that destabilizing flags of Chow-unstable projective varieties provide systems of diophantine approximations which are better than those given by Schmidt's subspace theorem, and we give examples of these systems.

## 20 Citations

### Diophantine approximations and toric deformations

- Mathematics
- 2003

1.1. Let S be a finite set of places of a finite field extension L of a number field K, containing all infinite places. Let E be a vector space over K of dimension N + 1. For v ∈ S, let lv0, · · · ,…

### On essentially large divisors

- Mathematics
- 2010

Motivated by the classical Theorems of Picard and Siegel and their generalizations, we define the notion of an {\it essentially large} effective divisor and derive some of its geometric and…

### A generalized Schmidt subspace theorem for closed subschemes

- MathematicsAmerican Journal of Mathematics
- 2021

abstract:We prove a generalized version of Schmidt's subspace theorem for closed subschemes in general position in terms of suitably defined Seshadri constants with respect to a fixed ample divisor.…

### Essentially large divisors and their arithmetic and function-theoretic inequalities

- Mathematics
- 2012

Abstract. Motivated by the classical Theorems of Picard and Siegel and their generalizations, we define the notion of an essentially large effective divisor and derive some of its arithmetic and…

### Local positivity and effective Diophantine approximation

- Mathematics
- 2020

In this paper we present a new approach to prove effective results in Diophantine approximation. We then use it to prove an effective theorem on the simultaneous approximation of two algebraic…

### Diophantine Approximation and Nevanlinna Theory

- Mathematics
- 2011

Beginning with the work of Osgood [65], it has been known that the branch of complex analysis known as Nevanlinna theory (also called value distribution theory) has many similarities with Roth’s…

### On the degeneracy of integral points and entire curves in the complement of nef effective divisors

- Mathematics
- 2019

### Positivity of Heights of Semistable Varieties

- Mathematics
- 2004

We completely solve a problem of S. Zhang about the positivity of a normalized height on the moduli space of semistable varieties of given degree and given dimension.

### POSITIVITY OF HEIGHTS OF SEMI-STABLE VARIETIES

- Mathematics
- 2004

LetK be a number field and OK its ring of integers. Let E be anOK-module of rank N + 1 in P(E), the projective space representing lines in E. For all closed subvarieties X ⊆ P(E K) of dimensiond let…

### Holomorphic curves into algebraic varieties

- Mathematics
- 2009

This paper establishes a defect relation for algebraically nondegenerate holomorphic mappings into an arbitrary nonsingular complex projective variety V (rather than just the projective space)…

## References

SHOWING 1-10 OF 22 REFERENCES

### Chow instability of certain projective varieties

- MathematicsNagoya Mathematical Journal
- 1983

A pair (X, D) of a projective variety X and a very ample divisor D on X is called stable (resp. semi-stable, resp. unstable) if the Chow point corresponding to the embedding is SL(N + 1)-stable…

### Diophantine Approximations and Value Distribution Theory

- Mathematics
- 1987

Heights and integral points.- Diophantine approximations.- A correspondence with Nevanlinna theory.- Consequences of the main conjecture.- The ramification term.- Approximation to hyperplanes.

### Quantitative diophantine approximations on projective varieties

- Mathematics
- 1996

In this note we study some aspects of a paper of G. Faltings and G. Wüstholz [7]. In particular, we work out a quantitative version of their main theorem. Our result even gives an explicit…

### Lectures on Arakelov Geometry

- Mathematics
- 1992

Introduction 1. Intersection theory on regular schemes 2. Green currents 3. Arithmetic Chow groups 4. Characteristic classes 5. The determinant of Laplace operators 6. The determinant of the…

### Algebraic Geometry

- MathematicsNature
- 1973

Introduction to Algebraic Geometry.By Serge Lang. Pp. xi + 260. (Addison–Wesley: Reading, Massachusetts, 1972.)

### Stability of two-dimensional local ring

- I, Invent. Math
- 1981