Multiscaled Simulation Methodology for Neuro-Inspired Circuits Demonstrated with an Organic Memristor

@article{Bennett2018MultiscaledSM,
  title={Multiscaled Simulation Methodology for Neuro-Inspired Circuits Demonstrated with an Organic Memristor},
  author={Christopher H. Bennett and Jean-Etienne Lorival and François Marc and Th{\'e}o Cabaret and Bruno Jousselme and Vincent Derycke and Jacques-Olivier Klein and Cristell Maneux},
  journal={IEEE Transactions on Multi-Scale Computing Systems},
  year={2018},
  volume={4},
  pages={822-832}
}
Organic memristors are promising molecular electronic devices for neuro-inspired on-chip learning applications. In this paper, we present a numerically efficient compact model suitable for <inline-formula><tex-math notation="LaTeX">$Fe(bpy)_3^{2+}$</tex-math><alternatives><inline-graphic xlink:href="bennett-ieq1-2773523.gif"/></alternatives></inline-formula> organic memristors operating according to an intramolecular charge transfer switching mechanism. This compact model, being physics-based… CONTINUE READING

References

Publications referenced by this paper.
SHOWING 1-10 OF 25 REFERENCES

Supervised learning with organic memristor devices and prospects for neural crossbar arrays

  • Proceedings of the 2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH´15)
  • 2015
VIEW 3 EXCERPTS

Etude, r ealisation et caract erisation de memristors organiques electro-greff es en tant que nanosynapses de circuits neuro-inspir es

T. Cabaret
  • Ph.D. dissertation, Universit e Paris Sud-Paris XI, Orsay, France, 2014.
  • 2014
VIEW 2 EXCERPTS

Similar Papers

Loading similar papers…