Multiscale Eigenbasis Calculations : N Eigenfunctions in O ( N log N )

@inproceedings{LivneMultiscaleEC,
  title={Multiscale Eigenbasis Calculations : N Eigenfunctions in O ( N log N )},
  author={O. E. Livne and Achi Brandt}
}
Motivated by quantum chemical calculations, we explore a novel multiscale approach for computing, storing, and expanding in many eigenfunctions of differential operators. This approach leads to efficient multiscale eigenbasis algorithms, which typically scale as O(N logN), where N is the number of eigenfunctions. In particular, they provide a vast generalization of the Fast Fourier Transform (FFT) algorithm, which expands in Fourier series, to expansions in terms of eigenfunctions of a general… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-10 of 19 references

Density-Functional Theory of Atoms and Molecules

  • R. G. Parr, W. Yang
  • 1989
Highly Influential
4 Excerpts

Multiscale Eigenbasis Algorithms

  • O. E. Livne
  • Weizmann Institute of Science, Rehovot,
  • 2000
3 Excerpts

Multiscale Scientific Computation

  • A. Brandt
  • 2000
1 Excerpt

Towards grid-based O(N) DFT methods: optimized non-orthogonal orbitals and multigrid acceleration

  • J. Bernholc, J. L. Fattebert
  • Physical Review B 62(3)
  • 2000
3 Excerpts

Photonic Crystals

  • J. D. Joannopolous, R. D. Meade, J. N. Winn
  • 1995
1 Excerpt

Similar Papers

Loading similar papers…