# Multiplicative Bases and an Erdős Problem

@article{Pach2018MultiplicativeBA,
title={Multiplicative Bases and an Erdős Problem},
author={P{\'e}ter P{\'a}l Pach and Csaba S{\'a}ndor},
journal={Combinatorica},
year={2018},
volume={38},
pages={1175-1203}
}
• Published 1 October 2018
• Mathematics
• Combinatorica
In this paper we investigate how small the density of a multiplicative basis of order h can be in {1,2,...,n} and in ℤ+. Furthermore, a related problem of Erdős is also studied: How dense can a set of integers be, if none of them divides the product of h others?
7 Citations
Multiplicative complements I
• Mathematics
• 2022
In this paper, we study how dense a multiplicative basis of order h for Z+ can be, improving on earlier results. Upon introducing the notion of a multiplicative complement, we present some tight
On sum-product bases
• Mathematics, Philosophy
• 2019
Besides various asymptotic results on the concept of sum-product bases in $\mathbb{N}_0$, we consider by probabilistic arguments the existence of thin sets $A,A'$ of integers such that
A generalization of primitive sets and a conjecture of Erd\H{o}s
• Mathematics
• 2020
A set of integers greater than 1 is primitive if no element divides another. Erdős proved in 1935 that the sum of $1/(n \log n)$ for $n$ running over a primitive set $A$ is universally bounded over
On the Critical Exponent for k-Primitive Sets
• Mathematics
Combinatorica
• 2021
A set of positive integers is primitive (or 1-primitive) if no member divides another. Erdős proved in 1935 that the weighted sum $\sum1/(n \log n)$ for $n$ ranging over a primitive set $A$ is
BME VIK Annual Research Report on Electrical Engineering and Computer Science 2016
• Engineering
• 2017
The current paper gives a brief account of the results achieved at the Faculty of Electrical Engineering and Informatics in the year 2016 and tries to encompass the research activities conducted at different departments of the Faculty.
On Thin Sum-Product Bases
• Mathematics
Comb.
• 2022