Multiple integrals and linear forms in zeta-values

@inproceedings{Rhin2007MultipleIA,
  title={Multiple integrals and linear forms in zeta-values},
  author={Georges Rhin and Carlo Viola},
  year={2007}
}
We deflne n-dimensional Beukers-type integrals over the unit hypercube. Using an n-dimensional birational transformation we show that such integrals are equal to suita- ble n-dimensional Sorokin-type integrals with linear constraints, and represent linear forms in 1;‡(2);‡(3);:::;‡(n) with rational coe-cients. Keywords: Multiple integrals of rational functions, values of the Riemann zeta-function, bira- tional transformations. 
On the equivalence of Beukers-type and Sorokin-type multiple integrals
It is well known that a triple Beukers-type integral, as defined by G. Rhin and C. Viola, can be transformed into a suitable triple Sorokin-type integral. I will discuss possible extensions to theExpand
Multiple zeta values, Pad\'e approximation and Vasilyev's conjecture
Sorokin gave in 1996 a new proof that pi is transcendental. It is based on a simultaneous Pad\'e approximation problem involving certain multiple polylogarithms, which evaluated at the point 1 areExpand
Linear forms in zeta values arising from certain Sorokin-type integrals
This paper deals with certain multiple integrals which can be represented as linear forms of zeta values with rational coefficients.

References

SHOWING 1-10 OF 12 REFERENCES
Arithmetic of linear forms involving odd zeta values
The story exposed in this paper starts in 1978, when R. Apery [Ap] gave a surprising sequence of exercises demonstrating the irrationality of ζ(2) and ζ(3). (For a nice explanation of Apery’sExpand
Integral identities and constructions of approximations to zeta-values
Nous presentons une construction generale de combinaisons lineaires a coefficients rationnels en les valeurs de la fonction zeta de Riemann aux entiers. Ces formes lineaires sont exprimees en termesExpand
The group structure for ζ(3)
1. Introduction. In his proof of the irrationality of ζ(3), Apéry [1] gave sequences of rational approximations to ζ(2) = π 2 /6 and to ζ(3) yielding the irrationality measures µ(ζ(2)) < 11.85078. ..Expand
S\'eries hyperg\'eom\'etriques multiples et polyz\^etas
We describe a theoretical and effective algorithm which enables us to prove that rather general hypergeometric series and integrals can be decomposed as linear combinations of multiple zeta values,Expand
A Note on the Irrationality of ζ(2) and ζ(3)
At the “Journees Arithmetiques” held at Marseille-Luminy in June 1978, R. Apery confronted his audience with a miraculous proof for the irrationality of ζ(3) = l-3+ 2-3+ 3-3 + .... The proof wasExpand
La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs
Resume Nous montrons que la dimension de l'espace vectoriel engendre sur les rationnels par 1 et les n premieres valeurs de la fonction zeta de Riemann aux entiers impairs croit au moins comme unExpand
Well-poised hypergeometric service for diophantine problems of zeta values | NOVA. The University of Newcastle's Digital Repository
On montre comment les concepts classiques de series et integrales hypergeometriques bien equilibrees devient crucial dans l'etude des proprietes arithmetiques des valeurs de la fonction zeta deExpand
Birational transformations and values of the Riemann zeta-function
Dans sa preuve du theoreme d'Apery sur l'irrationalite de ζ(3), Beukers [B] a introduit des integrales doubles et triples de fonctions rationnelles donnant de bonnes suites d'approximationsExpand
Hypergéométrie et fonction zêta de Riemann
Introduction et plan de l'article Arriere plan Les resultats principaux Consequences diophantiennes du Theoreme $1$ Le principe des demonstrations des Theoremes $1$ a $6$ Deux identites entre uneExpand
Irrationalité d’une infinité de valeurs de la fonction zêta aux entiers impairs
Au contraire des nombres ζ(2n)=∑k≥1 1/k2n= (−1)n−122n−1 B2nπ2n/(2n)! (n ≥ 1), dont la transcendance est une conséquence de celle de π, peu de résultats sont actuellement connus sur la natureExpand
...
1
2
...