Multiple imputation in principal component analysis

  title={Multiple imputation in principal component analysis},
  author={Julie Josse and J{\'e}r{\^o}me Pag{\`e}s and François Husson},
  journal={Adv. Data Analysis and Classification},
The available methods to handle missing values in principal component analysis only provide point estimates of the parameters (axes and components) and estimates of the missing values. To take into account the variability due to missing values a multiple imputation method is proposed. First a method to generate multiple imputed data sets from a principal component analysis model is defined. Then, two ways to visualize the uncertainty due to missing values onto the principal component analysis… CONTINUE READING
21 Citations
25 References
Similar Papers


Publications citing this paper.
Showing 1-10 of 21 extracted citations


Publications referenced by this paper.
Showing 1-10 of 25 references

Gestion des données manquantes en analyse en composantes principales

  • J Pagès, F Husson
  • J de la Société Française de Statistique
  • 2009
Highly Influential
4 Excerpts

missMDA: Handling missing values with/in multivariate data analysis (principal

  • F 42125–139 Husson, J Josse
  • 2010
2 Excerpts

Similar Papers

Loading similar papers…