# Multiple commutation relations in the models with gl(2|1) symmetry

@article{Slavnov2016MultipleCR, title={Multiple commutation relations in the models with gl(2|1) symmetry}, author={Nikita Andreevich Slavnov}, journal={Theoretical and Mathematical Physics}, year={2016}, volume={189}, pages={1624-1644} }

We consider quantum integrable models with the gl(2|1) symmetry and derive a set of multiple commutation relations between the monodromy matrix elements. These multiple commutation relations allow obtaining different representations for Bethe vectors.

## 12 Citations

### Multiple Actions of the Monodromy Matrix in gl(2|1)-Invariant Integrable Models

- Mathematics
- 2016

We study $\mathfrak{gl}(2|1)$ symmetric integrable models solvable by the
nested algebraic Bethe ansatz. Using explicit formulas for the Bethe vectors we
derive the actions of the monodromy matrix…

### Scalar products of Bethe vectors in models with gl(2|1) symmetry 2. Determinant representation

- Mathematics
- 2016

We study integrable models with gl(2|1) symmetry and solvable by nested algebraic Bethe ansatz. We obtain a determinant representation for scalar products of Bethe vectors, when the Bethe parameters…

### Scalar product of twisted XXX modified Bethe vectors

- MathematicsJournal of Statistical Mechanics: Theory and Experiment
- 2018

We consider closed XXX spin chains with broken total spin symmetry within the framework of the modified algebraic Bethe ansatz. We study multiple actions of the modified monodromy matrix entries on…

### Scalar products of Bethe vectors in models with gl ( 2 ∣ 1 ) symmetry 1. Super-analog of Reshetikhin formula

- Mathematics
- 2016

We study the scalar products of Bethe vectors in integrable models solvable by the nested algebraic Bethe ansatz and possessing gl ( 2 ∣ 1 ) symmetry. Using explicit formulas of the monodromy matrix…

### On Super Yangian Covariance of the Triple Product System

- MathematicsAdvances in Applied Clifford Algebras
- 2019

We investigate the relation between a triple product system and the super Yangian $$Y(\mathfrak {gl}(2|1))$$Y(gl(2|1)). We present the super Yangian covariance structure for a triple product system…

### Submission Introduction to the nested algebraic Bethe ansatz

- Mathematics
- 2021

We give a detailed description of the nested algebraic Bethe ansatz. We consider integrable models with a gl3-invariant R-matrix as the basic example, however, we also describe possible…

### Introduction to the nested algebraic Bethe ansatz

- Mathematics
- 2019

We give a detailed description of the nested algebraic Bethe ansatz. We consider integrable models with a $\mathfrak{gl}_3$-invariant $R$-matrix as the basic example, however, we also describe…

### New construction of eigenstates and separation of variables for SU(N) quantum spin chains

- Mathematics
- 2016

A bstractWe conjecture a new way to construct eigenstates of integrable XXX quantum spin chains with SU(N) symmetry. The states are built by repeatedly acting on the vacuum with a single operator…

### New compact construction of eigenstates for supersymmetric spin chains

- MathematicsJournal of High Energy Physics
- 2018

A bstractThe problem of separation of variables (SoV) in supersymmetric spin chains is closely related to the calculation of correlation functions in N=4$$ \mathcal{N}=4 $$ SYM theory which is…

## References

SHOWING 1-10 OF 34 REFERENCES

### Bethe vectors of GL(3)-invariant integrable models

- Mathematics, Physics
- 2012

We study GL(3)-invariant integrable models solvable by the nested algebraic Bethe ansatz. Different formulas are given for the Bethe vectors and the actions of the generators of the Yangian 𝒴(gl3)…

### Highest coefficient of scalar products in SU(3)-invariant integrable models

- Mathematics
- 2012

We study SU(3)-invariant integrable models solvable by nested algebraic Bethe ansatz. Scalar products of Bethe vectors in such models can be expressed in terms of a bilinear combination of their…

### Combinatorial Formulae for Nested Bethe Vectors

- Mathematics
- 2013

We give combinatorial formulae for vector-valued weight functions (off-shell nested Bethe vectors) for tensor products of irreducible evaluation modules over the Yangian Y (glN ) and the quantum…

### Algebraic properties of the Bethe ansatz for an spl(2,1)-supersymmetric t- J model

- Mathematics, Physics
- 1993

### Integral representations for correlation functions of the XXZ chain at finite temperature

- Physics
- 2004

We derive a novel multiple integral representation for a generating function of the σz–σz correlation functions of the spin- XXZ chain at finite temperature and finite, longitudinal magnetic field.…

### The supersymmetric t - J model in one dimension

- Physics
- 1991

The t-J model (related to the strong-correlation limit of the Hubbard model) is shown to be soluble in one dimension using the Bethe ansatz. The solution holds only when the Hamiltonian is…

### THE QUANTUM METHOD OF THE INVERSE PROBLEM AND THE HEISENBERG XYZ MODEL

- Physics
- 1979

CONTENTSIntroduction § 1. Classical statistical physics on a two-dimensional lattice and quantum mechanics on a chain § 2. Connection with the inverse problem method § 3. The six-vertex model § 4.…

### Calculation of norms of Bethe wave functions

- Physics
- 1982

A class of two dimensional completely integrable models of statistical mechanics and quantum field theory is considered. Eigenfunctions of the Hamiltonians are known for these models. Norms of these…

### The quantum inverse scattering method approach to correlation functions

- Physics
- 1984

The inverse scattering method approach is developed for calculation of correlation functions in completely integrable quantum models with theR-matrix of XXX-type. These models include the…