Multifractional Processes with Random Exponent

@inproceedings{Taqqu2005MultifractionalPW,
  title={Multifractional Processes with Random Exponent},
  author={Murad S. Taqqu},
  year={2005}
}
Multifractional Processes with Random Exponent (MPRE) are obtained by replacing the Hurst parameter of Fractional Brownian Motion (FBM) with a stochastic process. This process need not be independent of the white noise generating the FBM. MPREs can be conveniently represented as random wavelet series. We will use this type of representation to study their Hölder regularity and their self-similarity. 
Highly Cited
This paper has 18 citations. REVIEW CITATIONS

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 16 references

Rate optimality of wavelet series approximations of fractional Brownian motion

  • A. Ayache, M. S. Taqqu
  • J. Fourier Anal. Appl. 9(5)
  • 2003
Highly Influential
4 Excerpts

G

  • P. Doukhan
  • Oppenheim and M. S. Taqqu, eds., “Theory and…
  • 2003
2 Excerpts

The generalized multifractional Brownian motion

  • A. Ayache, J. Lévy Véhel
  • 19th “Rencontres Franco-Belges de Statisticiens…
  • 2000

Wavelets

  • Y. Meyer, F. Sellan, M. S. Taqqu
  • generalized white noise and fractional…
  • 1999
1 Excerpt

Elliptic Gaussian random processes

  • A. Benassi, S. Jaffard, D. Roux
  • Rev. Mat. Iberoamericana 13(1)
  • 1997
2 Excerpts

Gaussian random functions

  • M. A. Lifshits
  • Mathematics and its Applications 322, Kluwer…
  • 1995
1 Excerpt

Multifractional Brownian motion: definition and preliminary results

  • R. F. Peltier, J. Lévy Véhel
  • Technical Report 2645, Institut National de…
  • 1995
2 Excerpts

Wavelet bases for L2(R) with rational dilation factor

  • P. Auscher
  • in: “Wavelets and their applications”, Jones and…
  • 1992
2 Excerpts

Brownian motion and stochastic calculus

  • I. Karatzas, S. E. Shreve
  • Second edition, Graduate Texts in Mathematics 113…
  • 1991
1 Excerpt

Similar Papers

Loading similar papers…