Multifractal random walk.

@article{Bacry2001MultifractalRW,
  title={Multifractal random walk.},
  author={Emmanuel Bacry and J. Delour and Jean François Muzy},
  journal={Physical review. E, Statistical, nonlinear, and soft matter physics},
  year={2001},
  volume={64 2 Pt 2},
  pages={026103}
}
We introduce a class of multifractal processes, referred to as multifractal random walks (MRWs). To our knowledge, it is the first multifractal process with continuous dilation invariance properties and stationary increments. MRWs are very attractive alternative processes to classical cascadelike multifractal models since they do not involve any particular scale ratio. The MRWs are indexed by four parameters that are shown to control in a very direct way the multifractal spectrum and the… CONTINUE READING
Highly Influential
This paper has highly influenced 16 other papers. REVIEW HIGHLY INFLUENTIAL CITATIONS
84 Citations
11 References
Similar Papers

Citations

Publications citing this paper.
Showing 1-10 of 84 extracted citations

References

Publications referenced by this paper.
Showing 1-10 of 11 references

Potters,Theory of financial risk (Camb

  • M.J.P. Bouchaud
  • 1999
1 Excerpt

Eur

  • A. Arneodo, J. F. Muzy, D. Sornette
  • Phys. J. B 2, 277
  • 1998
3 Excerpts

II France 7

  • A. Arneodo, S. Roux, J. F. Muzy, J. Phys
  • 363
  • 1997
1 Excerpt

Turbulence (Camb

  • U. Frisch
  • 1995
2 Excerpts

Samorodnisky, Stable Non- Gaussian Random Processes

  • G.M.S. Taqqu
  • 1994
1 Excerpt

Mech

  • C. Meneveau, K. R. Sreenivasan, J. Fluid
  • 224, 429
  • 1991
1 Excerpt

Phys

  • J. F. Muzy, E. Bacry, A. Arneodo
  • Rev. Lett. 67, 3515
  • 1991

Physica D 46

  • B. Castaing, Y. Gagne, E. Hopfinger
  • 177
  • 1990
3 Excerpts

Adv

  • J. P. Kahane, J. Peyrière
  • Math. 22, 131
  • 1976
1 Excerpt

62

  • B. B. Mandelbrot, J. Fluid Mech
  • 331
  • 1974
1 Excerpt

Similar Papers

Loading similar papers…