Motor memory and local minimization of error and effort, not global optimization, determine motor behavior.

Abstract

Many real life tasks that require impedance control to minimize motion error are characterized by multiple solutions where the task can be performed either by co-contracting muscle groups, which requires a large effort, or, conversely, by relaxing muscles. However, human motor optimization studies have focused on tasks that are always satisfied by increasing impedance and that are characterized by a single error-effort optimum. To investigate motor optimization in the presence of multiple solutions and hence optima, we introduce a novel paradigm that enables us to let subjects repetitively (but inconspicuously) use different solutions and observe how exploration of multiple solutions affect their motor behavior. The results show that the behavior is largely influenced by motor memory with subjects tending to involuntarily repeat a recent suboptimal task-satisfying solution even after sufficient experience of the optimal solution. This suggests that the CNS does not optimize co-activation tasks globally but determines the motor behavior in a tradeoff of motor memory, error, and effort minimization.

DOI: 10.1152/jn.01058.2009

Extracted Key Phrases

5 Figures and Tables

010203020102011201220132014201520162017
Citations per Year

122 Citations

Semantic Scholar estimates that this publication has 122 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Ganesh2010MotorMA, title={Motor memory and local minimization of error and effort, not global optimization, determine motor behavior.}, author={Gowrishankar Ganesh and Masahiko Haruno and Mitsuo Kawato and Etienne Burdet}, journal={Journal of neurophysiology}, year={2010}, volume={104 1}, pages={382-90} }