• Corpus ID: 116902779

Morita theory in enriched context

@article{Ratkovic2012MoritaTI,
  title={Morita theory in enriched context},
  author={Kruna Ratkovic},
  journal={arXiv: Category Theory},
  year={2012}
}
  • Kruna Ratkovic
  • Published 12 February 2013
  • Mathematics
  • arXiv: Category Theory
Nous developpons une version homotopique de la theorie de Morita classique en utilisant la notion de monade forte. C’etait Anders Kock qui a montre qu’une monade T dans une categorie monoidale Σ est forte si et seulement si la monade T est enrichie. Nous montrons que cette correspondance entre force et enrichissement se traduit par un 2-isomorphisme de 2-categories. Sous certaines conditions sur la monade T, nous montrons que la categorie homotopique des T-algebres est equivalente au sens de… 
Gabriel-Morita Theory for Excisive Model Categories
TLDR
A Gabriel-Morita theory for strong monads on pointed monoidal model categories is developed and Schwede’s theorem on connective stable homotopy over a pointed Lawvere theory as special case is recovered.
Notion of strong monad in computing
  • Kruna Ratkovic
  • Mathematics
    2018 23rd International Scientific-Professional Conference on Information Technology (IT)
  • 2018
TLDR
This survey gives a brief introduction of the notion of a strong monad in a categorical framework together with some illustrative examples in the theory of computation.
Generic Hoare Logic for Order-Enriched Effects with Exceptions
TLDR
This work introduces a monad-based metalanguage that extends Moggi’s computational metalanguage with native exceptions and iteration, interpreted over monads supporting a dcpo structure and presents a Hoare calculus with abnormal postconditions for this metalanguage.

References

SHOWING 1-10 OF 17 REFERENCES
Model Categories of Diagram Spectra
Working in the category T of based spaces, we give the basic theory of diagram spaces and diagram spectra. These are functorsD→T for a suitable small topological categoryD. WhenD is symmetric
Strong functors and monoidal monads
In [4] we proved that a commutative monad on a symmetric monoidal closed category carries the structure of a symmetric monoidal monad ([4], Theorem 3.2). We here prove the converse, so that, taken
Monads on symmetric monoidal closed categories
This note is concerned with "categories with internal horn and | and we shall use the terminology from the paper [2] by EIL~.NBERG and Kv.Imy. The result proved may be stated briefly as follows : a
Algebra
THIS is a text–book intended primarily for undergraduates. It is designed to give a broad basis of knowledge comprising such theories and theorems in those parts of algebra which are mentioned in the
Phd
TLDR
The present work addresses the problematic of forecasting impacts of climate change on future rainfall regimes and their consequences on urban stormwater infrastructures with an integrated framework for producing high resolution probabilistic rainfall projections suitable for studying hydrological processes at the scale of urban drainage.
Paris
Voirie et Déplacements. — Arrêté n STV 3/2006-022 réglementant, à titre provisoire, la circulation dans la rue Ginoux, à Paris 15 (Arrêté du 25 janvier 2006)............... 274 Voirie et
2 ,
Since 2001, we have observed the central region of our Galaxy with the near-infrared (J, H, and Ks) camera SIRIUS and the 1.4 m telescope IRSF. Here I present the results about the infrared
43
...
...