Monodromy Map and Classical R-matrices

@inproceedings{SemenovTianShansky2008MonodromyMA,
  title={Monodromy Map and Classical R-matrices},
  author={M A Semenov-Tian-Shansky and St Petersburg Branch},
  year={2008}
}
  • M A Semenov-Tian-Shansky, St Petersburg Branch
  • Published 2008
We compute the Poisson bracket relations for the monodromy matrix of the auxiliary linear problem. If the basic Poisson brackets of the model contain derivatives, this computation leads to a peculiar kind of symmetry breaking which accounts for a 'spontaneous quantiza-tion' of the underlying global gauge group. A classification of possible patterns of symmetry breaking is outlined. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 12 references

On solutions of the classical Yang-Baxter equation for simple Lie algebras

  • A A Belavin, V G Drinfeld
  • Funct. Anal. Appl
  • 1982
Highly Influential
3 Excerpts

Hidden quantum groups inside Kac-Moody algebras

  • A Alekseev, L D Faddeev, M A Semenov-Tian-Shansky
  • Commun. Math. Phys
  • 1992
1 Excerpt

The unravelling of the quantum group structure in the WZNW theory

  • A Alekseev, L D Faddeev, M A Semenov-Tian-Shansky, A Volkov
  • The unravelling of the quantum group structure in…
  • 1991
1 Excerpt

Twisted affine Poisson structures, decompositions of Lie algebras and the classical Yang-Baxter equation

  • S Parmentier
  • Preprint. Max Planck Inst. für Mathematik
  • 1991
1 Excerpt

Classical origin of quantum group symmetries

  • K Gawedzki
  • Classical origin of quantum group symmetries
  • 1990
1 Excerpt

Duality and quantum groups

  • L Alvarez-Gaumé, C Gomez, G Sierra
  • Nucl. Phys. B330
  • 1990
1 Excerpt

Extended conformal algebra and Yang-Baxter equation

  • O Babelon
  • Phys. Lett. B215
  • 1988
1 Excerpt

Hamiltonian methods in the theory of solitons

  • L D Faddeev, L A Takhtajan
  • Hamiltonian methods in the theory of solitons
  • 1986
1 Excerpt

Dressing transformations and Poisson group actions

  • M A Semenov-Tian-Shansky
  • Publ. Res. Inst. Math. Sci. Kyoto University
  • 1985
2 Excerpts

Similar Papers

Loading similar papers…